已知命題p:x2-2x-8<0,命題q:|x-a|<1,若¬p是q的必要不充分條件,則a的取值范圍
 
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:根據(jù)不等式的性質(zhì)求出命題的等價(jià)條件,根據(jù)充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:由x2-2x-8<0得-2<x<4,即p:-2<x<4,則¬p:x≥4或x≤-2,
由|x-a|<1得-1<x-a<1,即a-1<x<a+1,即q:a-1<x<a+1,
若¬p是q的必要不充分條件,
則滿足a-1≥4或a+1≤-2,
解得a≥5或a≤-3,
故答案為:a≥5或a≤-3
點(diǎn)評(píng):本題主要考查充分條件和必要條件的應(yīng)用,根據(jù)不等式的性質(zhì)求出等價(jià)條件是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U={1,2,3,4},且A={x|x2-5x+m=0,x∈U},若∁UA={1,4}.
(1)求集合A;
(2)求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,若函數(shù)y=lnx+ax有大于零的極值點(diǎn),則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n∈R,若直線l:mx+ny-1=0與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,且坐標(biāo)原點(diǎn)O到直線l的距離為
3
,則△AOB的面積S的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x3
3
+x2-3x-4在[0,2]上的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面中,△ABC的角C的內(nèi)角平分線CE分△ABC面積所成的比
S△AEC
S△BEC
=
AC
BC
.將這個(gè)結(jié)論類比到空間:在三棱錐A-BCD中,平面DEC平分二面角A-CD-B且與AB交于E,則類比的結(jié)論為
VA-CDE
VB-CDE
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A={x|x是不大于10的正奇數(shù)},B={x|x是12的正約數(shù)},則A∩B=﹛
 
﹜.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y-kx-1=0(k∈R)與橢圓
x2
5
+
y2
b
=1恒有公共點(diǎn),則b的取值范圍是( 。
A、(0,1)
B、(0,5)
C、[1,5)∪(5,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從{1,2,3,4,5}中隨機(jī)選取一個(gè)數(shù)a,從{1,2,3}中隨機(jī)選取一個(gè)數(shù)b,則關(guān)于x的方程x2+ax+b2=0有兩個(gè)不相等的實(shí)根的概率是( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
15

查看答案和解析>>

同步練習(xí)冊(cè)答案