【題目】已知函數(shù). 

(Ⅰ)若在定義域與內(nèi)單調(diào)遞增,求實(shí)數(shù)的值;

(Ⅱ)若的極小值大于0,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ)(Ⅱ)

【解析】試題分析: (Ⅰ)由已知求出的兩根,,則在, 之間存在一個(gè)區(qū)間,使得,不滿足題意,因此,即可求得.(Ⅱ)比較, 的大小關(guān)系以及和區(qū)間端點(diǎn)的大小關(guān)系,分類討論函數(shù)的單調(diào)性并求出極小值,令極小值大于0,即可求出實(shí)數(shù)的取值范圍.

試題解析:(Ⅰ)依題意可知,令,可得,

,則在, 之間存在一個(gè)區(qū)間,使得,不滿足題意.

因此,即

(Ⅱ)當(dāng)時(shí),若,則上小于0,在上大于0,

,則上小于0,在上大于0,

因此是極小值點(diǎn), ,解得

當(dāng)時(shí), 上小于0,在上大于0,

因此是極小值點(diǎn), ,解得

當(dāng)時(shí), 沒有極小值點(diǎn),不符合題意.

綜上可得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏。將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個(gè)等級,隨即從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.

(Ⅰ)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為選手成績“優(yōu)秀”與文化程度有關(guān)?

注:其中.

(Ⅱ)在優(yōu)秀等級的選手中取6名,依次編號為1,2,3,4,5,6,在良好等級的選手中取6名,依次編號為1,2,3,4,5,6,在選出的6名優(yōu)秀等級的選手中任取一名,記其編號為,在選出的6名良好等級的選手中任取一名,記其編號為,求使得方程組有唯一一組實(shí)數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1= an+t,a1= (t為常數(shù),且t≠ ).
(1)證明:{an﹣2t}為等比數(shù)列;
(2)當(dāng)t=﹣ 時(shí),求數(shù)列{an}的前幾項(xiàng)和最大?
(3)當(dāng)t=0時(shí),設(shè)cn=4an+1,數(shù)列{cn}的前n項(xiàng)和為Tn , 若不等式 ≥2n﹣7對任意的n∈N*恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(14分)一根直木棍長為6m,現(xiàn)將其鋸為2段.

(1)若兩段木棍的長度均為正整數(shù),求恰有一段長度為2m的概率;

(2)求鋸成的兩段木棍的長度均大于2m的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓方程,其左焦點(diǎn)、上頂點(diǎn)和左頂點(diǎn)分別為, , ,坐標(biāo)原點(diǎn)為,且線段, , 的長度成等差數(shù)列.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若過點(diǎn)的一條直線交橢圓于點(diǎn), ,交軸于點(diǎn),使得線段被點(diǎn), 三等分,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知2acosB=2c﹣b,若O是△ABC外接圓的圓心,且 ,則m=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是等差數(shù)列,是等比數(shù)列,且,則下列結(jié)論正確的是( )

A. B.

C. D. ,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 的單調(diào)遞減區(qū)間為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓上有四個(gè)不同的點(diǎn)到直線的距離為2,則的取值范圍是(  )

A. (-12,8) B. (-8,12) C. (-13,17) D. (-17,13)

查看答案和解析>>

同步練習(xí)冊答案