分析 利用函數(shù)性質(zhì)直接求解.
解答 解:∵函數(shù)$f(x)=1+\sqrt{x}$,$g(x)=\sqrt{1-x}-\sqrt{x}$,
∴$\left\{\begin{array}{l}{1-x≥0}\\{x≥0}\end{array}\right.$,即0≤x≤1,
∴f(x)+g(x)=(1+$\sqrt{x}$)+($\sqrt{1-x}-\sqrt{x}$)=1+$\sqrt{1-x}$.0≤x≤1.
故答案為:1+$\sqrt{1-x}$.0≤x≤1.
點評 本題考查函數(shù)解析式的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2-2x+1 | B. | f(x)=x2-1 | C. | f(x)=2x | D. | f(x)=2x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\frac{5π}{4}$ | D. | $\frac{7π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com