如圖,點(diǎn)P是平行四邊形ABCD外一點(diǎn),Q是PA的中點(diǎn),求證:PC∥平面BQD.
考點(diǎn):直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:連結(jié)AC,BD,交于點(diǎn)O,連結(jié)OQ,由已知條件推導(dǎo)出OQ∥PC,由此能證明PC∥平面BQD.
解答: 證明:連結(jié)AC,BD,交于點(diǎn)O,連結(jié)OQ,
∵點(diǎn)P是平行四邊形ABCD外一點(diǎn),Q是PA的中點(diǎn),
∴O是BD中點(diǎn),∴OQ∥PC,
∵PC?平面BQD,OQ?平面BQD,
∴PC∥平面BQD.
點(diǎn)評(píng):本題考查直線與平面平行的證明,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD(字母順序是A→B→C→D)的邊長(zhǎng)為1,點(diǎn)E是AB邊長(zhǎng)的動(dòng)點(diǎn)(可以與A或B重合),則
DE
CD
的最大值是( 。
A、1
B、
1
2
C、0
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A1B1C1中,底面邊長(zhǎng)是2,側(cè)棱長(zhǎng)為4,M,N分別在AA1和CC1上,A1M=CN=1,P是BC中點(diǎn).
(1)求四面體A1-PMN的體積;
(2)證明A1B∥平面PMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
m
=(a,c),
n
=(cosC,-sinA),
m
n
,其中a,b,c分別是△A,B,C中角A,B,C所對(duì)的邊.
(Ⅰ)求角C的大;
(Ⅱ)求
3
sinA-cos(B+
π
4
)的最大值,并求取得最大值時(shí)角A,B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別為F1、F2,左頂點(diǎn)為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)若P是橢圓上的任意一點(diǎn),求
PF1
PA
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過拋物線y2=2px(p>0)外的一點(diǎn)A(-2,-4)且傾斜角為45°的直線l與拋物線分別交于M1,M2,如果|AM1|,|M1M2|,|AM2|成等比數(shù)列,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AC=
3
,AB=2BC=2,AC⊥FB. 
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(2x-1)=4x2-2x,x∈(-
1
2
,2),求函數(shù)f(x)的解析式,定義域及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線方程為ax-y+2a+1=0,
(1)若x∈(-1,1)時(shí),y>0恒成立,求a的取值范圍;
(2)若a∈(-1,1)時(shí),y>0恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案