16.已知A,B,C是△ABC的內(nèi)角,給出下列五個等式:
①sin2(A+B)+cos2C=1;
②sin(A+B)-sinC=0;
③cos(A+B)+cosC=0;
④sin$\frac{π-A}{4}$=cos$\frac{π+A}{4}$;
⑤tan$\frac{A+B}{2}$•tan$\frac{C}{2}$=1.
其中正確的個數(shù)是( 。
A.2B.3C.4D.5

分析 利用三角形內(nèi)角和定理結(jié)合同角三角函數(shù)的基本關(guān)系式逐一核對五個命題得答案.

解答 解:在△ABC中,
①sin2(A+B)+cos2C=sin2C+cos2C=1,故①正確;
②sin(A+B)-sinC=sinC-sinC=0,故②正確;
③cos(A+B)+cosC=cos(π-C)+cosC=-cosC+cosC=0,故③正確;
④∵$\frac{π-A}{4}+\frac{π+A}{4}=\frac{π}{2}$,∴sin$\frac{π-A}{4}$=cos$\frac{π+A}{4}$,故④正確;
⑤tan$\frac{A+B}{2}$•tan$\frac{C}{2}$=tan($\frac{π}{2}-\frac{C}{2}$)•tan$\frac{C}{2}$=cot$\frac{C}{2}$•tan$\frac{C}{2}$=1,故⑤正確.
故選:D.

點(diǎn)評 本題考查命題的真假判斷與應(yīng)用,考查了同角三角函數(shù)基本關(guān)系式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)={log_{2a}}x(a>0,a≠\frac{1}{2})$,
(1)若f(x1x2…x2015)=8,求f(x12)+f(x22)+…+f(x20152)的值.
(2)若x∈(-1,0)時,求g(x)=f(x+1)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,?ABCD中,E、F分別是BC、DC的中點(diǎn),BF與DE交于點(diǎn)G,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{DE}$;
(2)試用向量方法證明:A、G、C三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列函數(shù)的反函數(shù).
(1)y=$\frac{x-2}{x-1}$.
(2)y=$\sqrt{x}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等比數(shù)列{an}中.若a1+a2=$\frac{1}{3}$,a3+a4=1,則a7+a8+a9+a10=36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若f(x)=(m-2)x2-(m-1)x+5是偶函數(shù),則f(x)的遞增區(qū)間為(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求點(diǎn)A(-2,1)關(guān)于直線2x+y-1=0的對稱點(diǎn)A′的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在橢圓x2+4y2=16中,求通過點(diǎn)M(2,1)且被這點(diǎn)平分的弦所在的直線的方程和弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知y=f(x)是(0,+∞)上的可導(dǎo)函數(shù),滿足(x-1)[2f(x)+xf′(x)]>0(x≠1)恒成立,f(1)=2,若曲線f(x)在點(diǎn)(1,2)處的切線為y=g(x),且g(a)=2016,則a等于( 。
A.-500.5B.-501.5C.-502.5D.-503.5

查看答案和解析>>

同步練習(xí)冊答案