8.在△ABC中,若cosAcosB=-cos2$\frac{C}{2}$+1,則△ABC一定是( 。
A.等腰直角三角形B.直角三角形C.等腰三角形D.等邊三角形

分析 由三角函數(shù)公式化簡(jiǎn)可得cos(A-B)=1,結(jié)合三角形角的范圍可得.

解答 解:∵在△ABC中cosAcosB=-cos2$\frac{C}{2}$+1,
∴cosAcosB=-$\frac{1+cosC}{2}$+1=-$\frac{1}{2}$cosC+$\frac{1}{2}$,
∴2cosAcosB=-cosC+1=cos(A+B)+1,
∴2cosAcosB=cosAcosB-sinAsinB+1,
∴cosAcosB+sinAsinB=1,
∴cos(A-B)=1,∴A-B=0,即A=B,
∴△ABC一定是等腰三角形
故選:C.

點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù),涉及三角形形狀的判定,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,函數(shù)y=f(x)的圖象在點(diǎn)P(2,y)處的切線(xiàn)是L,則f(2)+f′(2)=(  )
A.-4B.3C.-2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求證:曲線(xiàn)y=$\frac{{a}^{2}}{x}$(a為非零常數(shù))上任何一點(diǎn)處的切線(xiàn)與坐標(biāo)軸圍成的三角形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知F1,F(xiàn)2分別是雙曲線(xiàn)3x2-5y2=75的左右焦點(diǎn),P是雙曲線(xiàn)上的一點(diǎn),且∠F1PF2=120°,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左、右焦點(diǎn)分別為F1、F2,過(guò)點(diǎn)F1作圓x2+y2=a2的一條切線(xiàn)分別交雙曲線(xiàn)的左、右兩支于點(diǎn)B、C,與雙曲線(xiàn)的漸近線(xiàn)在第二象限內(nèi)交于點(diǎn)D,且|CD|=|CF2|,則雙曲線(xiàn)的離心率為( 。
A.$\sqrt{6}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在四面體ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,則四面體ABCD的外接球的表面積為$\frac{77π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知橢圓的焦距為4$\sqrt{3}$,橢圓上動(dòng)點(diǎn)P與兩個(gè)焦點(diǎn)距離乘積的最大值為13,則該橢圓的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{13}+{y}^{2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.化簡(jiǎn)cos40°sin70°-sin40°sin20°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖1,在菱形ABCD中,AC=2,BD=2$\sqrt{3}$,AC,BD相交于點(diǎn)O.
(1)求邊AB的長(zhǎng);
(2)如圖2,將一個(gè)足夠大的直角三角板60°角的頂點(diǎn)放在菱形ABCD的頂點(diǎn)A處,繞點(diǎn)A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點(diǎn)E,F(xiàn),連接EF與AC相交于點(diǎn)G.
①判斷△AEF是哪一種特殊三角形,并說(shuō)明理由;
②旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn)E為邊BC的四等分點(diǎn)時(shí)(BE>CE),求CG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案