13.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{1+2i}{2-i}$=( 。
A.iB.-iC.-$\frac{4}{5}$-$\frac{3}{5}$iD.-$\frac{4}{5}$+$\frac{3}{5}$i

分析 根據(jù)復(fù)數(shù)的基本運(yùn)算進(jìn)行求解即可.

解答 解:$\frac{1+2i}{2-i}$=$\frac{(1+2i)(2+i)}{(2-i)(2+i)}$=$\frac{5i}{5}=i$,
故選:A.

點(diǎn)評 本題主要考查復(fù)數(shù)的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)z=i2+i3(i是虛數(shù)單位)在復(fù)平面中對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若n是一個正數(shù)值,且n的個位數(shù)字,大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,則稱n為“三位遞增數(shù)”(如135,148,567等),則能被2整除的“三位遞增數(shù)”的個數(shù)為34(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知復(fù)數(shù)z滿足條件|z-3i|=1,則|z|最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)復(fù)數(shù)z1=a+2i,z2=4-3i,
(1)當(dāng)a=1時,求復(fù)數(shù)z1z2的模;
(2)已知$\frac{{z}_{1}}{{z}_{2}}$為純虛數(shù),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知A、B、C、D是以O(shè)為球心的球面上的四點(diǎn),AB、AC、AD兩兩互相垂直,且AB=3,AC=4,AD=$\sqrt{11}$,則球的半徑為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某幾何體的三視圖如圖,則該幾何體的體積為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$,$\overrightarrow$均為單位向量,其夾角為θ,給出命題:p:|$\overrightarrow{a}$-$\overrightarrow$|>1;q:θ∈[$\frac{π}{2}$,$\frac{5π}{6}$),則p是q的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.通過市場調(diào)查,得到某產(chǎn)品的資金投入x(萬元)與獲得的利潤y(萬元)的數(shù)據(jù),如下表所示:
資金投入x23456
利潤y23569
參考公式:$\left\{\begin{array}{l}{\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x\overline{y}}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\end{array}\right.$
(1)畫出數(shù)據(jù)對應(yīng)的散點(diǎn)圖;
(2)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程$\widehat{y}$=bx+a;
(3)現(xiàn)投入資金10(萬元),求估計(jì)獲得的利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案