【題目】某熱帶風(fēng)暴中心B位于海港城市A東偏南30°的方向,與A市相距400km.該熱帶風(fēng)暴中心B以的速度向正北方向移動,影響范圍的半徑是350km.問:從此時起,經(jīng)多長時間后A市將受熱帶風(fēng)暴影響,大約受影響多長時間?
【答案】3.75h后,時間長達(dá)2.5h
【解析】
以A市為原點(diǎn),正東方向?yàn)?/span>x軸建立直角坐標(biāo)系,求得點(diǎn)坐標(biāo),設(shè)后熱帶風(fēng)暴中心B到達(dá)點(diǎn),根據(jù),用兩點(diǎn)間的距離公式列不等式,解一元二次不等式求得的取值范圍,由此求得市受影響的起始時間以及持續(xù)的時間.
如圖,以A市為原點(diǎn),正東方向?yàn)?/span>x軸建立直角坐標(biāo)系,因?yàn)?/span>,
所以熱帶風(fēng)暴中心B的坐標(biāo)為.設(shè)后熱帶風(fēng)暴中心B到達(dá)點(diǎn)處,由已知,A市受熱帶風(fēng)暴影響時,有,即,
整理得,解不等式,得.
A市受熱帶風(fēng)暴影響的時間為,
故在3.75h后,A市會受到熱帶風(fēng)暴的影響,時間長達(dá)2.5h.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).
(1)分別計算按這兩種方案所建的倉庫的體積;
(2)分別計算按這兩種方案所建的倉庫的表面積;
(3)哪個方案更經(jīng)濟(jì)些?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過點(diǎn)A的動直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】宋元時期杰出的數(shù)學(xué)家朱世杰在其數(shù)學(xué)巨著《四元玉鑒》卷中“菱草形段”第一個問題“今有菱草六百八十束,欲令‘落一形’捶(同垛)之,問底子(每層三角形邊菱草束數(shù),等價于層數(shù))幾何?”中探討了“垛積術(shù)”中的落一形垛(“落一形”即是指頂上束,下一層束,再下一層束,……,成三角錐的堆垛,故也稱三角垛,如圖,表示第二層開始的每層菱草束數(shù)),則本問題中三角垛底層菱草總束數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點(diǎn)和點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于不同的兩點(diǎn), ,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】算籌是在珠算發(fā)明以前我國獨(dú)創(chuàng)并且有效的計算工具,為我國古代數(shù)學(xué)的發(fā)展做出了很大貢獻(xiàn).在算籌計數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如圖:
表示多位數(shù)時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:
如果把5根算籌以適當(dāng)?shù)姆绞饺糠湃?下面的表格中,那么可以表示的三位數(shù)的個數(shù)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體中,分別為的中點(diǎn),過任作一個平面分別與直線相交于點(diǎn),則下列結(jié)論正確的是___________.①對于任意的平面,都有直線,,相交于同一點(diǎn);②存在一個平面,使得點(diǎn)在線段上,點(diǎn)在線段的延長線上; ③對于任意的平面,都有;④對于任意的平面,當(dāng)在線段上時,幾何體的體積是一個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求的極值;
(Ⅱ)若在區(qū)間上恒成立,求的取值范圍;
(Ⅲ)判斷函數(shù)的零點(diǎn)個數(shù).(直接寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某高中學(xué)校為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識競賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為且;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )
A. 乙有四場比賽獲得第三名
B. 每場比賽第一名得分為
C. 甲可能有一場比賽獲得第二名
D. 丙可能有一場比賽獲得第一名
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com