17.已知函數(shù)f(x)=4x3+ax2+bx+5的圖象在x=1處的切線為y=-12x.
(1)求f(x)的解析式;
(2)求f(x)在[-3,1]上的極值.

分析 (1)求出函數(shù)的導(dǎo)數(shù),求得切線的斜率和切點(diǎn),解方程可得a,b,即可得到f(x)的解析式;
(2)求出導(dǎo)數(shù),解方程可得極值點(diǎn),由導(dǎo)數(shù)的符號(hào),即可判斷極大值,計(jì)算可得.

解答 解:(1)函數(shù)f(x)=4x3+ax2+bx+5的導(dǎo)數(shù)為
f′(x)=12x2+2ax+b,
即有12+2a+b=-12,4+a+b+5=-12,
解得a=-3,b=-18,
即有f(x)=4x3-3x2-18x+5;
(2)f(x)=4x3-3x2-18x+5的導(dǎo)數(shù)為
f′(x)=12x2-6x-18=6(x+1)(2x-3),
由f′(x)=0,解得x=-1($\frac{3}{2}$舍去),
當(dāng)-3<x<-1時(shí),f′(x)>0,f(x)遞增;
當(dāng)-1<x<1時(shí),f′(x)<0,f(x)遞減.
則有x=-1處取得極大值,且為16.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程和單調(diào)區(qū)間、極值,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若已知x,y滿足x2+y2-4x+1=0.
(1)求$\frac{y}{x}$的取值范圍;
(2)x2+y2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.定義在R上的奇函數(shù)y=f(x)在(0,+∞)上遞增且f($\frac{1}{2}$)=0,則滿足f(log${\;}_{\frac{1}{9}}$x)>0的x的集合為(0,$\frac{1}{3}$)∪(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對(duì)于任意n∈N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=$\frac{px+1}{x+1}$確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Sn=$\frac{1}{2}({{c_n}+\frac{n}{c_n}})$,寫出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=$\frac{-1}{{{a_n}S_n^2}}$,Dn是數(shù)列{dn}的前n項(xiàng)之和,且$\lim_{n→∞}{D_n}$>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x3-4x2+5x-4,求經(jīng)過點(diǎn)A(2,-2)的曲線f(x)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知P1、P2、…、P2014是拋物線y2=4x上的點(diǎn),它們的橫坐標(biāo)依次為x1、x2、…、x2014,F(xiàn)是拋物線的焦點(diǎn),若x1+x2+…+x2014=10,則|P1F|+|P2F|+…|P2014F|=2024.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列的前n項(xiàng)和Sn是n的二次函數(shù),且前三項(xiàng)依次為-2,0,6,則a100=588.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2x2-2ax+b,當(dāng)x=-1時(shí),f(x)有最小值-8,記集合A={x|f(x)>0},B={x|t-1≤x≤t+1}.
(1)當(dāng)t=1時(shí),求(CRA)∪B;
(2)設(shè)命題p:A∩B≠Φ,若非p為真命題,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且2${S_n}={n^2}+n$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案