過(guò)點(diǎn)A(2,4)的圓x2+y2=20的切線方程為
 
考點(diǎn):圓的切線方程
專題:直線與圓
分析:要求過(guò)點(diǎn)A的切線方程,關(guān)鍵是求出切點(diǎn)坐標(biāo),判斷A點(diǎn)在圓上,代入圓的切線方程,整理即可得到答案
解答: 解:∵點(diǎn)A(2,4)在圓上,∴過(guò)點(diǎn)A(2,4)的圓x2+y2=2的切線方程為 2×x+4×y=20,即x+2y-10=0.
故答案為:x+2y-10=0.
點(diǎn)評(píng):求過(guò)一定點(diǎn)的圓的切線方程,首先必須判斷這點(diǎn)是否在圓上.若在圓上,則該點(diǎn)為切點(diǎn),若點(diǎn)P(x0,y0)在圓(x-a)2+(y-b)2=r2(r>0)上,則 過(guò)點(diǎn)P的切線方程為(x-a)(x0-a)+(y-b)(y0-b)=r2(r>0);若在圓外,切線應(yīng)有兩條.一般用“圓心到切線的距離等于半徑長(zhǎng)”來(lái)解較為簡(jiǎn)單.若求出的斜率只有一個(gè),應(yīng)找出過(guò)這一點(diǎn)與x軸垂直的另一條切線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角∠A、∠B、∠C的對(duì)邊分別為a,b,c,且2acosC+c=2b.
(1)求tanA的大小;
(2)若a2=bc,求∠C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四棱錐P-ABCD的底面邊長(zhǎng)是2,側(cè)棱長(zhǎng)是
6
,且它的五個(gè)頂點(diǎn)都在同一個(gè)球面上,則此球的半徑是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
log
1
2
2x-2
,求函數(shù)定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)的單調(diào)區(qū)間y=(
1
3
)
x2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,已知正(主)視圖是底邊長(zhǎng)為1的平行四邊形,側(cè)(左)視圖是一個(gè)長(zhǎng)為
3
,寬為1的矩形,俯視圖為兩個(gè)邊長(zhǎng)為1的正方形拼成的矩形,則該幾何體的體積V是(  )
A、1
B、
3
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋子中放有大小和形狀相同的4個(gè)小球,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球2個(gè),從袋子中不放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球標(biāo)號(hào)為a,第二次取出的小球標(biāo)號(hào)為b,記事件A表示“a+b=2”,則事件A的概率為( 。
A、
1
5
B、
3
4
C、
1
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
e1
、
e2
是夾角為60°的兩個(gè)單位向量,
a
=3
e1
-2
e2
,
b
=2
e1
-3
e2

(1)在坐標(biāo)紙中利用直尺圓規(guī)畫出
a
b
;
(2)求
a
+
b
a
-
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用一根細(xì)鐵絲圍一個(gè)面積為4的矩形,
(1)試將所有鐵絲的長(zhǎng)度y表示為矩形的某條邊長(zhǎng)x的函數(shù);
(2)①求證:函數(shù)f(x)=x+
4
x
在(0,2]上是減函數(shù),在[2,+∞)上是增函數(shù);
②題(1)中矩形的邊長(zhǎng)x多大時(shí),細(xì)鐵絲的長(zhǎng)度最短?

查看答案和解析>>

同步練習(xí)冊(cè)答案