A. | f($\frac{7}{5}$)<f($\frac{7}{2}$)<f($\frac{7}{3}$) | B. | f($\frac{7}{2}$)<f($\frac{7}{3}$)<f($\frac{7}{5}$) | C. | f($\frac{7}{3}$)<f($\frac{7}{2}$)<f($\frac{7}{5}$) | D. | f($\frac{7}{5}$)<f($\frac{7}{3}$)<f($\frac{7}{2}$) |
分析 由f(-x)=f(x),f(x)=-f(x+1),可得函數(shù)的奇偶性和周期性,結(jié)合函數(shù)的單調(diào)性進(jìn)行比較即可.
解答 解:f(-x)=f(x)得函數(shù)為偶函數(shù),
由f(x)=-f(x+1)得f(x+1)=-f(x),
即f(x+2)=-f(x+1)=f(x),
即函數(shù)f(x)是周期為2的周期函數(shù),
則f($\frac{7}{2}$)=f($\frac{7}{2}$-4)=f(-$\frac{1}{2}$)=f($\frac{1}{2}$),f($\frac{7}{3}$)=f($\frac{7}{3}$-2)=f($\frac{1}{3}$),
f($\frac{7}{5}$)=f($\frac{7}{5}$-2)=f(-$\frac{3}{5}$)=f($\frac{3}{5}$),
∵f(x)在[0,1]上為減函數(shù),
∴$\frac{1}{3}$<$\frac{1}{2}$<$\frac{3}{5}$,
∴f($\frac{1}{3}$)>f($\frac{1}{2}$)>f($\frac{3}{5}$),
即f($\frac{7}{5}$)<f($\frac{7}{2}$)<f($\frac{7}{3}$),
故選:A
點(diǎn)評(píng) 本題主要考查函數(shù)值的大小比較,根據(jù)條件判斷函數(shù)的奇偶性和單調(diào)性以及函數(shù)的周期性是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{{\begin{array}{l}{x=3{x^/}}\\{y=\frac{1}{2}{y^/}}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{{x^/}=3x}\\{{y^/}=\frac{1}{2}y}\end{array}}\right.$ | C. | $\left\{{\begin{array}{l}{x=3{x^/}}\\{y=2{y^/}}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{{x^/}=3x}\\{{y^/}=2y}\end{array}}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 兩條射線或圓或橢圓 | B. | 圓或橢圓或雙曲線 | ||
C. | 兩條射線或圓或拋物線 | D. | 橢圓或雙曲線或拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com