如圖所示的程序框圖,其輸出的結果是( 。
A、11B、12
C、131D、132
考點:程序框圖
專題:算法和程序框圖
分析:算法的功能是求S=12×11×10×…×k的值,根據(jù)條件確定跳出循環(huán)的k值,計算輸出的S值.
解答: 解:由程序框圖知:算法的功能是求S=12×11×10×…×k的值,
∵跳出循環(huán)的k值為10,
∴輸出的S=12×11=132.
故選:D.
點評:本題考查了循環(huán)結構的程序框圖,根據(jù)框圖的流程判斷算法的功能是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設x∈(0,π),則函數(shù)y=sinx+
1
sinx
的最小值是( 。
A、2
B、
9
4
C、
5
2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα=
4
5
,且0<α<π,則tan(α+
π
4
)=( 。
A、
1
7
B、7
C、-
1
7
D、-7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一批產品中,有10件正品和5件次品,對產品逐個進行檢測,如果已檢測到前3次均為正品,則第4次檢測的產品仍為正品的概率是(  )
A、
7
12
B、
4
15
C、
6
11
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={0,1,2,3,4,5},B=[2,+∞),則圖中陰影部分所表示的集合( 。
A、{1}
B、{0,1}
C、{1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,∠ACB=45°,BC=6過A作AD⊥BC,垂足D在線段BC上且異于點B,沿AD將△ABD折起,組成三棱錐A-BCD,過點D作DE⊥平面ABC,且點E為三角形ABC的垂心.
(1)求證:△BDC為直角三角形.
(2)當BD的長為多少時,三棱錐A-BCD的體積最大?并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠要建造一個長方體形有蓋貯水池,其容積為48m3,深為3m.如果池壁每平方米的造價為100元,上蓋與下底每平方米的造價為120元,怎樣設計水池的長和寬能使總造價最低?最低總造價是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,cosA=-
5
13
,cosB=
3
5
,
(1)求sinA,sinB,sinC的值   
(2)設BC=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sinxcos(x-
π
4
)-
2
2

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)設α∈(0,
π
2
),且f(
α
2
+
π
8
)=
3
5
,求tan(α+
π
4
).

查看答案和解析>>

同步練習冊答案