8.下表是關(guān)于某設(shè)備的使用年限(年)和所需要的維修費(fèi)用y(萬元)的幾組統(tǒng)計(jì)數(shù)據(jù):
x23456
y2.23.85.56.57.0
(1)請?jiān)诮o出的坐標(biāo)系中畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請根據(jù)散點(diǎn)圖,判斷y與x之間是否有較強(qiáng)線性相關(guān)性,若有求線性回歸直線方程$\stackrel{∧}{y}=\stackrel{∧}x+\stackrel{∧}{a}$;
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用為多少?
(參考數(shù)值:$\sum_{i=1}^{5}{x}_{i}{y}_{i}=112.3$ $\sum_{i=1}^{5}{{x}_{i}}^{2}=80$)
(參考公式:$\stackrel{∧}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$;$\stackrel{∧}{a}=\overline{y}-\stackrel{∧}\overline{x}$;)

分析 (1)由題意易得散點(diǎn)圖:
(2)由已知數(shù)據(jù)求出$\overline{x}$=4,$\overline{y}$=5,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=90,結(jié)合參考數(shù)據(jù)可得$\widehat$和$\widehat{a}$,可得回歸直線方程;
(3)把x=10代入(2)中的方程計(jì)算可得;

解答 解:(1)由題意可得散點(diǎn)圖如圖:
(2)從散點(diǎn)圖可知,變量y與x之間有較強(qiáng)的線性相關(guān)性.
由已知數(shù)據(jù)有:$\overline{x}$=4,$\overline{y}$=5,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=90,
又由參考數(shù)據(jù)知$\sum_{i=1}^{5}{x}_{i}{y}_{i}=112.3$ 
∴$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{112.3-5×4×5}{90-5×{4}^{2}}$=1.23,
∴$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$=5-1.23×4=0.08,
∴回歸直線方程為$\widehat{y}$=1.23x+0.08;
(3)當(dāng)x=10時(shí),維修費(fèi)用$\widehat{y}$=1.23×10+0.08=12.38(萬元)

點(diǎn)評 本題考查線性回歸方程,考查學(xué)生的計(jì)算能力,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求與兩直線x-2y+1=0和2x-4y-5=0等距離的點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求雙曲線9y2-4x2=-36的實(shí)軸長、虛軸長、焦點(diǎn)坐標(biāo)、離心率和漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知圓C:(x+1)2+y2=25,定點(diǎn)A(1,0),M為圓上的一個(gè)動點(diǎn),連接MA,作MA的垂直平分線交半徑MC于P,當(dāng)M點(diǎn)在圓周上運(yùn)動時(shí),點(diǎn)P的軌跡方程為$\frac{{x}^{2}}{\frac{25}{4}}+\frac{{y}^{2}}{\frac{21}{4}}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=lg(1-x2),x∈(-1,1)的值域?yàn)椋?∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且對任意的a,b∈[-1,1],當(dāng)a+b≠0時(shí),都有$\frac{f(a)+f(b)}{a+b}$>0.
(1)試證明:對任意的a,b∈[-1,1],滿足:f(a)+f(-b)=f(a)-f(b);
(2)若a>b,試比較f(a)與f(b)的大。
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)這兩個(gè)函數(shù)的定義域的交集是空集,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(a+1)x2+ax+a(其中a>0).
(I)若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)有最小值為0,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)若函數(shù)f(x)恰有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y(單位:千克)與銷售價(jià)格x(單位:元/千克)滿足關(guān)系式y(tǒng)=$\frac{a}{x-3}$+10(x-6)2,其中3<x<6,a為常數(shù).已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品12千克.
(Ⅰ)求a的值;
(Ⅱ)若該商品的成品為3元/千克,試確定銷售價(jià)格x的值,使商場每日銷售該商品所獲得的利潤最大,并求出此時(shí)的最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義在R上的奇函數(shù)g(x),設(shè)函數(shù)f(x)=$\frac{(x+1)^{2}+g(x)}{{x}^{2}+1}$的最大值為M,最小值為m,則M+m=2.

查看答案和解析>>

同步練習(xí)冊答案