10.小明想沏壺茶喝,當(dāng)時(shí)的情況是,開(kāi)水沒(méi)有,燒開(kāi)水需要15分鐘,燒開(kāi)水的壺要洗,需要1分鐘,沏茶的壺和茶杯要洗,需2分鐘,茶葉已有,取茶葉需1分鐘,沏茶也需1分鐘,小明要喝到自己所沏的茶至少需要花的時(shí)間為( 。
A.16分鐘B.19分鐘C.20分鐘D.17分鐘

分析 燒開(kāi)水的同時(shí)可以洗茶壺,洗茶杯,拿茶葉,由此求解.

解答 解:具體工序安排如下:
①洗燒開(kāi)水的壺、灌入涼水需1分鐘,
②燒開(kāi)水需15分鐘,燒開(kāi)水時(shí)洗茶壺,茶杯需2分鐘,拿茶葉需1分鐘,
③沏茶需1分鐘.
一共只需要3個(gè)大步驟,共有17分鐘.
故選:D.

點(diǎn)評(píng) 此類問(wèn)題屬于合理安排時(shí)間問(wèn)題,要奔著既節(jié)約時(shí)間,又使各項(xiàng)工序互不矛盾進(jìn)行安排.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.不等式$\frac{(x+4)(x+3)}{{{x^2}-5x+4}}<0$的解集為(-4,-3)∪(1,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若點(diǎn)P(2,4)在函數(shù)f(x)=logax的圖象上,點(diǎn)Q(m,16)在f(x)的反函數(shù)圖象上,則m=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.對(duì)任意的實(shí)數(shù)x,若[x]表示不超過(guò)x的最大整數(shù),則“-1<x-y<1”是“[x]=[y]”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.?dāng)?shù)列{an}的通項(xiàng)公式為an=$\frac{1}{{n}^{2}+2n}$,其前n項(xiàng)和為Sn,則S10的值為( 。
A.1-$\frac{1}{12}$B.$\frac{1}{2}$(1-$\frac{1}{12}$)C.$\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{12}$)D.$\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{11}$-$\frac{1}{12}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若a=2${\;}^{\frac{1}{3}}$,b=ln2,c=log5sin$\frac{4π}{5}$,則(  )
A.c>a>bB.b>a>cC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+{cos^2}x+\frac{3}{2}$.
(1)當(dāng)$x∈[{-\frac{π}{6},\frac{π}{3}}]$時(shí),求函數(shù)y=f(x)的值域;
(2)已知ω>0,函數(shù)$g(x)=f({\frac{ωx}{2}+\frac{π}{12}})$,若函數(shù)g(x)的最小正周期是π,求ω的值和函數(shù)g(x)的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對(duì)方再連續(xù)發(fā)球2次,依次輪換.每次發(fā)球,勝方得1分,負(fù)方得0分.設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立.甲、乙的一局比賽中,甲先發(fā)球.隨機(jī)變量ξ表示開(kāi)始第4次發(fā)球時(shí)甲的得分,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在Rt△ABC中,∠C=90°,$sinA=\frac{5}{13}$,則tanB的值為(  )
A.$\frac{12}{13}$B.$\frac{5}{12}$C.$\frac{13}{12}$D.$\frac{12}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案