已知拋物線y2=2px(p>0),在拋物線上取M、N兩點(diǎn),M在第一象限,N在第四象限,O是坐標(biāo)原點(diǎn),∠MON=
π
3
,∠ONM=
π
6
,如果OM的傾斜角α,則2tanα+tan3α的值為( 。
A、
2
B、2
3
C、
3
D、與p的值有關(guān)
考點(diǎn):拋物線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)出M,N的坐標(biāo),代入拋物線方程,兩式相除,化簡可得結(jié)論.
解答: 解:設(shè)M(rcosα,rsinα),則N(2rcos(
π
3
-α),rsin(
π
3
-α)),
代入拋物線方程,兩式相除
sin2α
sin2(
π
3
-α)
=
2cosα
cos(
π
3
-α)
,
化簡可得2tanα+tan3α=
3

故選:C.
點(diǎn)評:本題考查拋物線方程,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,向量
OA
=
a
,
OB
=
b
OC
=
c
,A、B、C在一條直線上,且
AC
=3
BC
,則( 。
A、
c
=-
1
2
a
+
3
2
b
B、
c
=
3
2
a
-
1
2
b
C、
c
=-
a
+2
b
D、
c
=
a
+2
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列哪個(gè)空間圖形與平面圖形中的平行四邊形作為類比對象較合適( 。
A、三棱錐B、平行六面體
C、棱臺D、長方體

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=-
1
2
x2+bln(x+2)在(-1,+∞)上是減函數(shù),則b的取值范圍是( 。
A、[-2,+∞)
B、[-1,+∞)
C、(-∞,-2]
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)與橢圓C2
x2
25
+
y2
9
=1的公共焦點(diǎn),A、B是兩曲線分別在第一、三象限的交點(diǎn),且以F1、F2、A、B為頂點(diǎn)的四邊形的面積為6
6
,則雙曲線C的離心率為(  )
A、
5
2
B、
3
5
5
C、
10
3
D、
2
10
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列六個(gè)命題:(1)兩個(gè)向量相等,則它們的起點(diǎn)相同,終點(diǎn)相同;(2)若|
a
|=|
b
|,則
a
=
b
;(3)若
AB
=
CD
,則四點(diǎn)A、B、C、D構(gòu)成平行四邊形;(4)在?ABCD中,一定有
AB
=
DC
;(5)若
a
=
b
,
b
=
c
,則
a
=
c
;(6)若
a
b
,
b
c
,則
a
c
.其中不正確的個(gè)數(shù)是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若奇函數(shù)f(x)在R上為增函數(shù),a、b、c∈R,則“a+b>0,b+c>0,c+a>0”是“f(a)+f(b)+f(c)>0”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=sin(2x+
π
3
)的圖象,只需把函數(shù)y=sin(2x-
π
6
)的圖象( 。
A、向右平移個(gè)
π
2
單位
B、向左平移
π
2
個(gè)單位
C、向右平移
π
4
個(gè)單位
D、向左平移
π
4
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z=
1
1-i
+i7對應(yīng)的點(diǎn)位于( 。
A、第四象限B、第三象限
C、第二象限D、第一象限

查看答案和解析>>

同步練習(xí)冊答案