某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表
廣告費x(萬元) 2 3 4 5
利潤y(萬元) 26 49 54
根據(jù)上表可得回歸方程為
y
=9.4x+9.1,表中有一數(shù)據(jù)丟失,請推算該數(shù)據(jù)的值為
 
考點:線性回歸方程
專題:計算題,概率與統(tǒng)計
分析:先求出橫標的平均數(shù),代入回歸方程為
y
=9.4x+9.1,求出縱標的平均數(shù)可得結(jié)論.
解答: 解:由題意,
.
x
=
2+3+4+5
4
=3.5,
代入
y
=9.4x+9.1,可得
.
y
=42,
∴丟失數(shù)據(jù)的值為4×42-26-49-54=39,
故答案為:39.
點評:本題考查數(shù)據(jù)的回歸直線方程,利用回歸直線方程恒過樣本中心點是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二項式(2+x)n=a0+a1x+a2x2+…+anxn,若a1=a2,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x||x|≤1},A={x|
1
x
<1},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>b>0)半焦距為c,過焦點且斜率為1的直線與雙曲線C的左右兩支各有一個交點,若拋物線y2=4cx的準線被雙曲線C截得的弦長為
2
2
3
be2(e為雙曲線C的離心率),則e的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
-2i
1-i
的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從8人中選3人站成一排,其中甲不站在首位,有
 
種排法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:sin
π
6
-cos2
π
4
cosπ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,i是虛數(shù)單位.若a+i=
bi
1+i
,則a+bi=(  )
A、2+iB、2-i
C、1+2iD、1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2-x,x≤0
4-x2
,0<x≤2
,則
2
-2
f(x)dx的值為( 。
A、π+6B、π-2C、2πD、8

查看答案和解析>>

同步練習(xí)冊答案