考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,不等關(guān)系與不等式
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的概念及應(yīng)用
分析:對(duì)于①,取x=3,e
3>1+3+3
2,即可判斷;
對(duì)于②,令x=1,
,計(jì)算可得結(jié)論;
對(duì)于③,構(gòu)造函數(shù)h(x)=cosx-1+
x2,h′(x)=-sinx+x,h″(x)=cosx+1≥0,從而可得函數(shù)h(x)在[0,+∞)上單調(diào)增,故成立;
對(duì)于④,取x=3,計(jì)算可得結(jié)論.
解答:
解:對(duì)于①,取x=3,e
3>1+3+3
2,所以不等式不恒成立;
對(duì)于②,x=1時(shí),左邊=
,右邊=0.75,不等式成立;
x=
時(shí),左邊=
,右邊=
,左邊大于右邊,所以x∈[0,+∞),不等式不恒成立;
對(duì)于③,構(gòu)造函數(shù)h(x)=cosx-1+
x2,h′(x)=-sinx+x,h″(x)=cosx+1≥0,
∴h′(x)在[0,+∞)上單調(diào)增,∴h′(x)≥h′(0)=0,
∴函數(shù)h(x)在[0,+∞)上單調(diào)增,∴h(x)≥0,∴cosx≥1-
x
2,故③恒成立;
對(duì)于④,取x=3,ln(1+3)<3-
,所以不等式不恒成立;
故答案為:③.
點(diǎn)評(píng):本題考查大小比較,考查構(gòu)造函數(shù),考查導(dǎo)數(shù)知識(shí)的運(yùn)用,確定函數(shù)的單調(diào)性是解題的關(guān)鍵.