12.觀察式子:
cos$\frac{2}{3}$π=-$\frac{1}{2}$;
cos$\frac{2}{5}$π+cos$\frac{4}{5}$π=-$\frac{1}{2}$;
cos$\frac{2}{7}$π+cos$\frac{4}{7}$π+cos$\frac{6}{7}$π=-$\frac{1}{2}$;
按此規(guī)律猜想第五個(gè)的等式為cos$\frac{2}{11}$π+cos$\frac{4}{11}$π+cos$\frac{6}{11}$π+cos$\frac{8}{11}$π+cos$\frac{10}{11}$π=-$\frac{1}{2}$.

分析 由已知中的式子,分析式子左邊各項(xiàng)中角的式子是n的關(guān)系,進(jìn)而可得cos$\frac{2}{2n+1}$π+cos$\frac{4}{2n+1}$π+…+cos$\frac{2n}{2n+1}$π=-$\frac{1}{2}$,將n=5代入可得答案.

解答 解:由已知中:
cos$\frac{2}{3}$π=-$\frac{1}{2}$;
cos$\frac{2}{5}$π+cos$\frac{4}{5}$π=-$\frac{1}{2}$;
cos$\frac{2}{7}$π+cos$\frac{4}{7}$π+cos$\frac{6}{7}$π=-$\frac{1}{2}$;

歸納可得:cos$\frac{2}{2n+1}$π+cos$\frac{4}{2n+1}$π+…+cos$\frac{2n}{2n+1}$π=-$\frac{1}{2}$;
故n=5時(shí),第五個(gè)式子為:cos$\frac{2}{11}$π+cos$\frac{4}{11}$π+cos$\frac{6}{11}$π+cos$\frac{8}{11}$π+cos$\frac{10}{11}$π=-$\frac{1}{2}$,
故答案為:cos$\frac{2}{11}$π+cos$\frac{4}{11}$π+cos$\frac{6}{11}$π+cos$\frac{8}{11}$π+cos$\frac{10}{11}$π=-$\frac{1}{2}$

點(diǎn)評 歸納推理的一般步驟是:(1)通過觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,三角形的三個(gè)內(nèi)角A、B、C滿足2sinAcosB=sinC,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)在區(qū)間(-1,1)上單調(diào)遞減的是( 。
A.y=cosxB.y=$\frac{1}{x-0.5}$C.y=-ln(x+1)D.y=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知兩圓x2+y2=9和(x+4)2+(y+3)2=8,則它們的相交弦長為$\frac{4\sqrt{14}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四邊形ABCD中,AB=AD=4,BC=6,CD=2,3$\overrightarrow{AB}$•$\overrightarrow{AD}$+4$\overrightarrow{CB}$•$\overrightarrow{CD}$=0.
(1)求四邊形ABCD的面積;
(2)求三角形ABC的外接圓半徑R;
(3)若∠APC=60°,求PA+PC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.正三角形ABC的邊長為2,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為$\sqrt{3}$,則四面體ABCD外接球的表面積為(  )
A.B.C.D.$\frac{{7\sqrt{7}}}{6}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)y=f(x2),則y″=2f′(x2)+4x2f″(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)A(2,3)與點(diǎn)B(6,y)的距離等于4$\sqrt{5}$,則y的值是( 。
A.11或5B.-5或-11C.11D.11或-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知直線l1,l2的斜率k1,k2是關(guān)于k的方程2k2-3k-b=0的兩根,若l1⊥l2,則b=2;若l1∥l2,則b=-$\frac{9}{8}$.

查看答案和解析>>

同步練習(xí)冊答案