1.甲、乙、丙三人進(jìn)行射擊比賽,在一輪比賽中,甲、乙丙各射擊一發(fā)子彈,根據(jù)以往統(tǒng)計(jì)資料知,甲擊中9環(huán)、10環(huán)的概率分別為0.3、0.2,乙中擊中9環(huán)、10環(huán)的概率分別為0.4、0.3,丙擊中9環(huán)、10環(huán)的概率分別為0.6、0.4,設(shè)甲、乙、丙射擊相互獨(dú)立,求:
(1)丙擊中的環(huán)數(shù)不超過甲擊中的環(huán)數(shù)的概率;
(2)求在一輪比賽中,甲、乙擊中的環(huán)數(shù)都沒有超過丙擊中的環(huán)數(shù)的概率.

分析 (1)記在一輪比賽中“丙擊中的環(huán)數(shù)不超過甲擊中的環(huán)數(shù)”為事件A,A包括“丙擊中9環(huán)且甲擊中9或10環(huán)”、“丙擊中10環(huán)且甲擊中10環(huán)”兩個(gè)互斥事件,由此能求出丙擊中的環(huán)數(shù)不超過甲擊中的環(huán)數(shù)的概率.
(2)記在一輪比賽中,“甲擊中的環(huán)數(shù)超過丙擊中的環(huán)數(shù)”為事件B,“乙擊中的環(huán)數(shù)超過丙擊中的環(huán)數(shù)”為事件C,則B與C相互獨(dú)立.由此能求出在一輪比賽中,甲、乙擊中的環(huán)數(shù)都沒有超過丙擊中的環(huán)數(shù)的概率.

解答 解:已知甲擊中9環(huán)、10環(huán)的概率分別為0.3、0.2,則甲擊中8環(huán)及其以下環(huán)數(shù)的概率是0.5,
乙擊中9環(huán)、10環(huán)的概率分別為0.4、0.3,則乙擊中8環(huán)及其以下環(huán)數(shù)的概率是0.3,
丙擊中9環(huán)、10環(huán)的概率分別為0.6、0.4,0.6+0.4=1,則丙擊中8環(huán)及其以下環(huán)數(shù)是不可能事件.
(1)記在一輪比賽中“丙擊中的環(huán)數(shù)不超過甲擊中的環(huán)數(shù)”為事件A,
A包括“丙擊中9環(huán)且甲擊中9或10環(huán)”、“丙擊中10環(huán)且甲擊中10環(huán)”兩個(gè)互斥事件,
則丙擊中的環(huán)數(shù)不超過甲擊中的環(huán)數(shù)的概率P(A)=0.6(0.3+0.2)+0.4×0.2=0.38.
(2)記在一輪比賽中,“甲擊中的環(huán)數(shù)超過丙擊中的環(huán)數(shù)”為事件B,
“乙擊中的環(huán)數(shù)超過丙擊中的環(huán)數(shù)”為事件C,
則B與C相互獨(dú)立,且P(B)=0.2×0.6=0.12,P(C)=0.3×0.6=0.18.
所以在一輪比賽中,甲、乙擊中的環(huán)數(shù)都沒有超過丙擊中的環(huán)數(shù)的概率為:
P($\overline{B}$)P($\overline{C}$)=[1-P(B)][1-P(C)]
=0.88×0.82=0.7216.

點(diǎn)評(píng) 本題考查概率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意互斥事件的概率和對(duì)立事件的概率的計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2,∠BAC=120°,D在BC上,且$\overrightarrow{BD}$=$\frac{1}{4}$$\overrightarrow{BC}$,計(jì)算$\overrightarrow{AD}$•$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,則輸出的S的值是( 。
A.150B.300C.400D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法正確的是( 。
A.命題“?x0∈R,x02+x0+2013>0”的否定是“?x∈R,x2+x+2013<0”
B.命題p:函數(shù)f(x)=x2-2x僅有兩個(gè)零點(diǎn),則命題p是真命題
C.函數(shù)$f(x)=\frac{1}{x}$在其定義域上是減函數(shù)
D.給定命題p、q,若“p且q”是真命題,則?p是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.kx2-kx+2>0恒成立,則k的取值范圍是[0,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)$a={({\frac{1}{2}})^{\frac{1}{2}}}$,$b=\root{4}{0.9}$,c=lg0.3,則a,b,c的大小關(guān)系是(  )
A.b>a>cB.a>b>cC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ax2+2ax+1.x∈[-3,2]的最大值為4.求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|(x-2)[x-(3a+1)]<0},B={x|2a<x<a2+1}.
(Ⅰ)當(dāng)a=-2時(shí),求A∪B;
(Ⅱ)求使B⊆A的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知三棱錐O-ABC中OA、OB、OC兩兩垂直,OC=3,OA=x,OB=y,若x+y=4,則三棱錐體積的最大值是2.

查看答案和解析>>

同步練習(xí)冊(cè)答案