設(shè)數(shù)列{an}滿足a1+2a2=3,點Pn(n,an)對任意的n∈N*,都有向量
PnPn+1
=(1,2),則數(shù)列{an}的前n項和Sn
 
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件推導(dǎo)出{an}是等差數(shù)列,公差d=2,a1=-
1
3
,由此能求出數(shù)列{an}的前n項和Sn
解答: 解:∵Pn(n,an),∴Pn+1(n+1,an+1),
PnPn+1
=(1,an+1-an)(1,2),
∴an+1-an=2,∴{an}是等差數(shù)列,公差d=2,
將a2=a1+2,代入a1+2a2=3中,
解得a1=-
1
3
,
Sn=-
1
3
n+
n(n-1)
2
×2
=n2-
4
3
n

故答案為:n2-
4
3
n
點評:本題考查數(shù)列的前n項和的求法,是中檔題,解題時要認(rèn)真審題,注意向量知識的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x,數(shù)列{an}中,2an+1-2an+an+1an=0,a1=1且an≠0,若數(shù)列{bn}中,b1=2且bn=f(
1
an-1
)(n≥2).
(Ⅰ)求證:數(shù)列{
1
an
}是等差數(shù)列,并求出數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{
bn
an
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在電視節(jié)目《爸爸去哪兒》中,五位爸爸各帶一名子(女)體驗鄉(xiāng)村生活.一天,村長安排1名爸爸帶3名小朋友去完成某項任務(wù),至少要選1個女孩(5個小朋友中3男2女).Kimi(男)說我爸去我就去,我爸爸不去我就不去;石頭(男)生爸爸的氣,說我爸去我就不去,我爸爸不去我就去,若其他人都沒意見且這兩人的愿望都能滿足,那么可選的方案有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圖象連續(xù)不斷的曲線函數(shù)y=f(x)在區(qū)間(a,b)(b-a=1)上有唯一零點,如果用二分法求這個零點(精確到0.001)的近似值,那么將區(qū)間(a,b)等分的次數(shù)至少是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若aij表示n×n階矩陣
1247
35812
691318
10141925
?????ann
中第i行、第j列的元素(i、j=1,2,3,…,n),則ann=
 
(結(jié)果用含有n的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2-2ax+1在[0,2]上的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義平面向量之間的一種運算“?”如下:對任意的
a
=(x1,y1),
b
=(x2,y2),令
a
?
b
=x1y2-x2y1,現(xiàn)有下列命題:
①若
a
b
共線,則
a
?
b
=0
a
?
b
=
b
?
a

③對任意的λ∈R,有(λ
a
)?
b
=λ(
a
?
b

④(
a
?
b
2+(
a
b
2=|
a
|2|
b
|2
其中的真命題是
 
(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(x+1),將y=f(x)的圖象向左平移1個單位,再將圖象上所有點的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,求函數(shù)F(x)=f(x)-g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ex-
1
x
的零點所在的區(qū)間是( 。
A、(0,
1
2
 )
B、( 
1
2
,1)
C、(1,
3
2
 )
D、( 
3
2
,2 )

查看答案和解析>>

同步練習(xí)冊答案