函數(shù)f(x)=|log2(x+1)|的圖象大致是( 。
A、
B、
C、
D、
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先去絕對值,需要分類討論,在根據(jù)y=log2x的圖象的平移和反轉(zhuǎn)得到函數(shù)f(x)的圖象.
解答: 解:當(dāng)x≥0時,f(x)=log2(x+1)圖象為y=log2x的圖象向左平移一個單位,
當(dāng)-<x<0,f(x)=-log2(x+1)圖象為y=log2x圖象向左平移一個單位,再沿x軸翻折,
故只有A符合,
故選:A.
點評:本題主要考查含有絕對值的對數(shù)函數(shù)的圖象,利用了圖象的平移和反轉(zhuǎn),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

我們把在線段上到兩端點距離之比為
5
-1
2
≈0.618的點稱為黃金分割點.類似地,在解析幾何中,我們稱離心率為
5
-1
2
的橢圓為黃金橢圓,已知橢圓
x2
a2
+
y2
b2
=1 (a>b>0)的焦距為2c,則下列四個命題:
①a、b、c成等比數(shù)列是橢圓為黃金橢圓的充要條件;
②若橢圓是黃金橢圓且F2為右焦點,B為上頂點,A1為左頂點,則
BA1
BF2
=0
③若橢圓是黃金橢圓,直線l過橢圓中心,與橢圓交于點E、F,P為橢圓上任意一點(除頂點外),且PE與PF的斜kPE、kPF存在,則kPE•kPF為定值.
④若橢圓是黃金橢圓,P、Q為橢圓上任意兩點,M為PQ中點,且PQ與OM的斜率kPQ與kOM(O為坐標(biāo)原點)存在,則kPQ•kOM為定值.
⑤橢圓四個頂點構(gòu)成的菱形的內(nèi)切圓過橢圓的焦點是橢圓為黃金橢圓的充要條件.
其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知棱臺的兩個底面面積分別是80cm2和245cm2,截得這個棱臺的棱錐的高為35cm,則這個棱臺的高為(  )
A、10cmB、15cm
C、20cmD、25cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知等差數(shù)列{an}和等比數(shù)列{bn}滿足:3a1-a82+3a15=0,且a8=b10,則b3b17=( 。
A、9B、12C、l6D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:若
h(x)
xk
在[k,+∞)上為增函數(shù),則稱h(x)為“k次比增函數(shù)”,其中k∈N*,已知f(x)=x3+2ax2+ax,g(x)=ex-ax.
(Ⅰ)若f(x)是“1次比增函數(shù)”,又是“2次比增函數(shù)”,求實數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時,求函數(shù)g(x)在[m-1,m](m>0)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
m
x+1
+nlnx(m,n為常數(shù))在x=1處的切線為x+y-2=0.
(1)求y=f(x)的單調(diào)區(qū)間;
(2)若任意實數(shù)x∈[
1
e
,1],使得對任意的t∈[
1
2
,2]上恒有f(x)≥t3-t2-2at+2成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+an-1=2n-1,n≥2,且n∈N+,則數(shù)列{
an
2n
}的前n項和為( 。
A、Sn=1-
1
2n
B、Sn=2-
1
2n-1
-
n
2n
C、Sn=n(1-
1
2n
D、Sn=2-
1
2n-1
+
n
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-ax2-4(a+1)x+3在[2,+∞)上遞減,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線x=1是函數(shù)y=f(2x)的圖象的一條對稱軸,則f(3-2x)圖象的對稱軸是:
 

查看答案和解析>>

同步練習(xí)冊答案