14.設(shè)a∈R,則“a=1”是“復(fù)數(shù)(a-1)(a+2)+(a+3)i為純虛數(shù)”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分又非必要條件

分析 根據(jù)充分必要條件的定義以及純虛數(shù)的定義判斷即可.

解答 解:當(dāng)a=1時(shí),(a-1)(a+2)+(a+3)i=4i,為純虛數(shù),
當(dāng)(a-1)(a+2)+(a+3)i為純虛數(shù)時(shí),a=1或-2,
故選:A.

點(diǎn)評(píng) 本題考查了充分必要條件,考查純虛數(shù)的定義,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,拋物線y=ax2+2x+c經(jīng)過點(diǎn)A(0,3),B(-1,0),拋物線的頂點(diǎn)為點(diǎn)D,對(duì)稱軸與x軸交于點(diǎn)E,連結(jié)BD,則拋物線表達(dá)式:y=-x2+2x+3BD的長為2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.①兩條平行直線L1 L2分別過P(-1,3),Q(2,-1)它們分別繞P、Q旋轉(zhuǎn),但始終保  持平行,則L1與L2之間的距離d的取值范圍是(0,4) 
②x2+y2-2x-4y+6=0表示一個(gè)圓的方程.
③過點(diǎn)(-2,-3)且在兩坐標(biāo)軸上的截距相等的直線l的方程為x+y=5.
④直線ax+by+1=0被圓x2+y2-2ax+a=0截得的弦長為2,則實(shí)數(shù)a的值為-2.
其中錯(cuò)誤的命題是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.$\underset{lim}{n→∞}$$\frac{2n+3}{n+1}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(0,3)$,則$\overrightarrow b$在$\overrightarrow a$的方向上的投影為$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C的長軸長為$2\sqrt{6}$,左焦點(diǎn)的坐標(biāo)為(-2,0);
(1)求C的標(biāo)準(zhǔn)方程;
(2)設(shè)與x軸不垂直的直線l過C的右焦點(diǎn),并與C交于A、B兩點(diǎn),且$|AB|=\sqrt{6}$,試求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知x,y∈R+,且x+2y=1,則x•y的最大值為$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.點(diǎn)M(20,40),拋物線y2=2px(p>0)的焦點(diǎn)為F,若對(duì)于拋物線上的任意點(diǎn)P,|PM|+|PF|的最小值為41,則p的值等于42或22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-2ax(a>0).
(1)當(dāng)a=2時(shí),解關(guān)于x的不等式-3<f(x)<5;
(2)對(duì)于給定的正數(shù)a,有一個(gè)最大的正數(shù)M(a),使得在整個(gè)區(qū)間[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;
(3)函數(shù)y=f(x)在[t,t+2]的最大值為0,最小值是-4,求實(shí)數(shù)a和t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案