2.$\underset{lim}{n→∞}$$\frac{2n+3}{n+1}$=2.

分析 分子、分母都除以n,從而求出代數(shù)式的極限值即可.

解答 解:$\underset{lim}{n→∞}$$\frac{2n+3}{n+1}$=$\lim_{x→∞}\frac{{2+\frac{3}{n}}}{{1+\frac{1}{n}}}$=2,
故答案為:2.

點(diǎn)評(píng) 本題考查了極限的求值運(yùn)算,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,已知正方形OABC邊長為3,點(diǎn)M,N分別為線段BC,AB上一點(diǎn),且2BM=MC,AN=NB,P為△BNM內(nèi)一點(diǎn)(含邊界),設(shè)$\overrightarrow{OP}=λ\overrightarrow{OA}+μ\overrightarrow{OC}$(λ,μ為實(shí)數(shù)),則$λ-\frac{1}{3}μ$的最大值為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知平面α內(nèi)有一點(diǎn)M(1,-1,2),平面α的一個(gè)法向量$\overrightarrow n$=(2,-1,2),則下列點(diǎn)P在平面α內(nèi)的是( 。
A.(-4,4,0)B.(2,0,1)C.(2,3,3)D.(3,-3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從裝有2個(gè)紅球和 2個(gè)白球的口袋內(nèi)任取2個(gè),則互斥但不對(duì)立的兩個(gè)事件是(  )
A.至少一個(gè)白球與都是白球B.至少一個(gè)白球與至少一個(gè)紅球
C.恰有一個(gè)白球與 恰有2個(gè)白球D.至少一個(gè)白球與都是紅球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某奶茶店的日銷售收入y(單位:百元)與當(dāng)天平均氣溫x(單位:℃)之間的關(guān)系如下:
x-2-1012
y5221
通過上面的五組數(shù)據(jù)得到了x與y之間的線性回歸方程:$\stackrel{∧}{y}$=-x+2.8;但現(xiàn)在丟失了一個(gè)數(shù)據(jù),該數(shù)據(jù)應(yīng)為(  )
A.3B.4C.5D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)$y=|{\begin{array}{l}{cosx}&{sinx}\\{sinx}&{cosx}\end{array}}|$的最小正周期為aπ,則實(shí)數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a∈R,則“a=1”是“復(fù)數(shù)(a-1)(a+2)+(a+3)i為純虛數(shù)”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知AB為單位圓O的一條弦,P為單位圓O上的點(diǎn).若f(λ)=|$\overrightarrow{AP}$-λ$\overrightarrow{AB}$|(λ∈R)的最小值為m,當(dāng)點(diǎn)P在單位圓上運(yùn)動(dòng)時(shí),m的最大值為$\frac{4}{3}$,則線段AB的長度為$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在二項(xiàng)式(x+$\frac{6}{x}$)6的展開式中,常數(shù)項(xiàng)是4320.

查看答案和解析>>

同步練習(xí)冊(cè)答案