設(shè)f(x)=
x-2,(x≥10)
f[f(x+6)],(x<10)
,則f(5)的值為
 
考點(diǎn):函數(shù)的值,分段函數(shù)的應(yīng)用
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用分段函數(shù)的性質(zhì)求解.
解答: 解:∵f(x)=
x-2,(x≥10)
f[f(x+6)],(x<10)
,
∴f(5)=f[f(11)]
=f(9)
=f[f(15)]
=f(13)
=11.
故答案為:11.
點(diǎn)評(píng):本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要注意分段函數(shù)的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=axsinx+cosx,且f(x)在x=
π
4
處的切線斜率為
2
π
8

(1)求a的值,并討論f(x)在[-π,π]上的單調(diào)性;
(2)設(shè)函數(shù)g(x)=ln(mx+1)+
1-x
1+x
,x≥0,其中m>0,若對(duì)任意的x1∈[0,+∞)總存在x2∈[0,
π
2
],使得g(x1)≥f(x2)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)y=f(x)(x∈R)在[0,+∞)為增函數(shù),則滿(mǎn)足不等式f(x)+f(2x+1)>0的x的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列5個(gè)判斷:
①若f(x)=x2-2ax在[1,+∞)上增函數(shù),則a=1;
②函數(shù)f(x)=2x-x2只有兩個(gè)零點(diǎn);
③函數(shù)y=ln(x2+1)的值域是R;
④函數(shù)y=2|x|的最小值是1;
⑤在同一坐標(biāo)系中函數(shù)y=2x與y=2-x的圖象關(guān)于y軸對(duì)稱(chēng).
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)y=ax2+bx+c中,a•c<0,則ax2+bx+c=0的根的個(gè)數(shù)有
 
 個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2x+
1
2
(x∈R),g(x)=cosx(x∈[
π
3
,
3
]),若a,b∈R,且有f(a)=g(b),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為2的正三角形,AA1⊥面ABC,高為5,一質(zhì)點(diǎn)自點(diǎn)A出發(fā),沿著三棱柱的側(cè)面繞行兩周到達(dá)點(diǎn)A1的最短路線的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=x2的圖象F按向量
a
=(3,-2)平移到F′,則F′的函數(shù)解析式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案