12.已知奇函數(shù)f (-2)=5,則f ( 2 )=-5.

分析 根據(jù)函數(shù)奇偶性的定義和性質(zhì)即可得到結(jié)論.

解答 解:∵函數(shù)f(x)為奇函數(shù),且f (-2)=5,
∴f(2)=-f(-2)=-5,
故答案為:-5.

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的應(yīng)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知P,Q是圓心在坐標(biāo)原點(diǎn)O的單位圓上的兩點(diǎn),分別位于第一象限和第四象限,且P點(diǎn)的縱坐標(biāo)為$\frac{4}{5}$,Q點(diǎn)的橫坐標(biāo)為$\frac{5}{13}$,則cos∠POQ=-$\frac{33}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={x|x<a},B={x|1<x<2},B⊆A,則實(shí)數(shù)a的取值范圍是( 。
A.a≤1B.a<1C.a≥2D.a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知集合A={x|x2-2x-3<0,x∈R},B={x|ax2-x+3<0,x∈R};
(1)當(dāng)a=2時(shí),求A∩B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.“x>2”是“x2-4>0”的( 。
A.必要而不充分條件B.充分而不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:已知在全部50人中隨機(jī)抽取1人,抽到喜愛(ài)打籃球的學(xué)生的概率為$\frac{3}{5}$.
(1)請(qǐng)將列聯(lián)表補(bǔ)充完整(不用寫(xiě)計(jì)算過(guò)程);
 喜愛(ài)不喜愛(ài)合計(jì)
男生 5 
女生10  
合計(jì)  50
并求出:有多大把握認(rèn)為喜愛(ài)打籃球與性別有關(guān),說(shuō)明你的理由;
(2)若從該班不喜愛(ài)打籃球的男生中隨機(jī)抽取3人調(diào)查,求其中某男生甲被選到的概率.
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=3|x+1|的單調(diào)遞減區(qū)間是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=$\frac{\sqrt{x}-1}{lgx-\frac{1}{2}}$的定義域是( 。
A.(0,$\sqrt{10})∪(\sqrt{10},+∞)$∪($\sqrt{10}$,+∞)B.($\frac{3}{2},+∞$)
C.$[1,\frac{3}{2})∪(\frac{3}{2},+∞)$D.$(1,\sqrt{10})∪(\sqrt{10},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓的一個(gè)頂點(diǎn)為A(0,-$\sqrt{2}$),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線x-y+2$\sqrt{2}$=0的距離為3
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)P是橢圓上的點(diǎn),且以點(diǎn)P及兩個(gè)焦點(diǎn)為頂點(diǎn)的三角形面積等于1,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案