【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸建立極坐標系.若直線l的極坐標方程為,曲線C的極坐標方程為: ,將曲線C上所有點的橫坐標縮短為原來的一半,縱坐標不變,然后再向右平移一個單位得到曲線C1

(1)求曲線C1的直角坐標方程;

(2)已知直線l與曲線C1交于A,B兩點,點P(2,0),求|PA|+|PB|的值.

【答案】(1) (2)

【解析】試題分析:(1)先根據(jù)將曲線C的極坐標方程化為直角坐標方程;再根據(jù)圖像平移得曲線C1的直角坐標方程;(2)先根據(jù)將直線l的極坐標方程化為直角坐標方程;再設(shè)直線參數(shù)方程,代入C1,最后根據(jù)參數(shù)幾何意義以及韋達定理求|PA|+|PB|的值.

試題解析:(Ⅰ)曲線的直角坐標方程為

所以曲線的直角坐標方程為.

(Ⅱ)由直線的極坐標方程,得

所以直線的直角坐標方程為,又點在直線上,

所以直線的參數(shù)方程為: ,t為參數(shù),

代入的直角坐標方程得,

設(shè)對應(yīng)的參數(shù)分別為,

,

所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為了增強高考與高中學習的關(guān)聯(lián)度,考生總成績由統(tǒng)一高考的語文、數(shù)學、外語3個科目成績和高中學業(yè)水平考試3個科目成績組成.保持統(tǒng)一高考的語文、數(shù)學、外語科目不變,分值不變,不分文理科,外語科目提供兩次考試機會.計入總成績的高中學業(yè)水平考試科目,由考生根據(jù)報考高校要求和自身特長,在思想政治、歷史、地理、物理、化學、生物、信息技術(shù)七科目中自主選擇三科.

(1)某高校某專業(yè)要求選考科目物理,考生若要報考該校該專業(yè),則有多少種選考科目的選擇;

(2)甲、乙、丙三名同學都選擇了物理、化學、歷史組合,各學科成績達到二級的概率都是0.8,且三人約定如果達到二級不參加第二次考試,達不到二級參加第二次考試,如果設(shè)甲、乙、丙參加第二次考試的總次數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱中,側(cè)面為矩形, , , 的中點, 交于點,且平面.

(1)證明: ;

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓 的離心率是,且直線 被橢圓截得的弦長為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)若直線與圓 相切:

(i)求圓的標準方程;

(ii)若直線過定點,與橢圓交于不同的兩點、,與圓交于不同的兩點、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)討論在其定義域上的單調(diào)性;

(2)若時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的上下兩個焦點分別為 ,過點軸垂直的直線交橢圓兩點, 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)已知為坐標原點,直線 軸交于點,與橢圓交于 兩個不同的點,若存在實數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是周期為4的偶函數(shù),當時, ,則不等式在區(qū)間上的解集為( )

A. (1,3) B. (-1,1) C. (-1,0)∪(1,3) D. (-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的滿足,前項的和為,且.

(1)求的值;

(2)設(shè),證明:數(shù)列是等差數(shù)列;

(3)設(shè),若,求對所有的正整數(shù)都有成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究“教學方式”對教學質(zhì)量的影響,某高中老師分別用兩種不同的教學方式對入學數(shù)學平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).如圖莖葉圖為甲、乙兩班(每班均為20人)學生的數(shù)學期末考試成績.

(1)現(xiàn)從甲班數(shù)學成績不低于80分的同學中隨機抽取兩名同學,求成績?yōu)?7分的同學至少有一名被抽中的概率;

(2)學校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚?/span>列聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關(guān)”.

甲班

乙班

合計

優(yōu)秀

不優(yōu)秀

合計

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步練習冊答案