2.已知函數(shù)f(x)=lnx-2ax3(a>0),若|f(x)|≥$\frac{1}{2}$對于任意的x∈(0,1]恒成立,則實數(shù)a的取值范圍為( 。
A.[$\frac{\sqrt{e}}{6}$,+∞)B.[$\frac{1}{6}$,$\frac{\sqrt{e}}{6}$]C.[$\frac{1}{6}$,+∞)D.[$\frac{1}{3}$,+∞)

分析 令g(x)=2ax3-lnx,求導函數(shù),確定函數(shù)的單調(diào)性,從而可求函數(shù)的最小值,利用最小值大于等于1,即可確定實數(shù)a取值范圍.

解答 解:顯然x=1時,有|2a|≥$\frac{1}{2}$,a≤-1或a≥$\frac{1}{4}$.
由a>0,即有a≥$\frac{1}{4}$;
令g(x)=2ax3-lnx,g′(x)=6ax2-$\frac{1}{x}$,
當a≥$\frac{1}{4}$時,對任意x∈(0,1],g′(x)=$\frac{6a{x}^{3}-1}{x}$=0,
解得x=$\root{3}{\frac{1}{6a}}$,
函數(shù)在(0,$\root{3}{\frac{1}{6a}}$)上單調(diào)遞減,在($\root{3}{\frac{1}{6a}}$,+∞)上單調(diào)遞增,
∴|g(x)|的最小值為g($\root{3}{\frac{1}{6a}}$)=$\frac{1}{3}$+$\frac{1}{3}$ln(6a)≥$\frac{1}{2}$,
解得:a≥$\frac{\sqrt{e}}{6}$.
∴實數(shù)a取值范圍是[$\frac{\sqrt{e}}{6}$,+∞).
故選A.

點評 本題考查導數(shù)的綜合運用,考查函數(shù)的單調(diào)性與最值,考查運算能力,正確求導是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)滿足f(x+1)=f(x-1),且f(x)是偶函數(shù),當x∈[0,1]時,f(x)=x,若在區(qū)間[-1.3]上函數(shù)g(x)=f(x)-kx-k有4個零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知O是坐標原點,F(xiàn)是橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的一個焦點,過F且與x軸垂直的直線與橢圓交于M,N兩點,則cos∠MON的值為( 。
A.$\frac{5}{13}$B.-$\frac{5}{13}$C.$\frac{2\sqrt{13}}{13}$D.-$\frac{2\sqrt{13}}{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=log2(2x-3)+3.
(1)求f(x)的定義域;
(2)求函數(shù)y=f(x),x∈[4,7]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.295是等差數(shù)列-5,-2,1,…的第(  )項.
A.99B.100C.101D.102

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.當x∈[$\frac{π}{6}$,$\frac{π}{3}$]時,k+tan(2x-$\frac{π}{3}$)的值總大于0,求實數(shù)k的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知F1、F2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,橢圓上一點M滿足△MF1F2的周長為4+2$\sqrt{3}$,過橢圓上頂點與右頂點的直線與直線4x-2y+5=0垂直.
(1)求橢圓C的方程;
(2)若直線l交橢圓C于A,B兩點,以AB為直徑的圓過原點,求弦長|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知:一個二次函數(shù)的圖象與x軸的交點為(-1,0),(3,0),與y軸的交點為(0,3).求這個二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知中心在原點的橢圓與雙曲線有公共焦點,左、右焦點分別為F1、F2,且兩條曲線在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2,則e1•e2+1的取值范圍為( 。
A.(1,+∞)B.($\frac{4}{3}$,+∞)C.($\frac{6}{5}$,+∞)D.($\frac{10}{9}$,+∞)

查看答案和解析>>

同步練習冊答案