7.當x∈[$\frac{π}{6}$,$\frac{π}{3}$]時,k+tan(2x-$\frac{π}{3}$)的值總大于0,求實數(shù)k的范圍.

分析 由已知中x∈[$\frac{π}{6}$,$\frac{π}{3}$],根據(jù)正切函數(shù)的圖象和性質(zhì)可得tan(2x-$\frac{π}{3}$),進而由值總大于0,得到k的取值范圍.

解答 解:當x∈[$\frac{π}{6}$,$\frac{π}{3}$]時,2x-$\frac{π}{3}$∈[0,$\frac{π}{3}$],
故tan(2x-$\frac{π}{3}$)∈[0,$\sqrt{3}$],
則k+tan(2x-$\frac{π}{3}$)∈[k,k$+\sqrt{3}$],
若k+tan(2x-$\frac{π}{3}$)的值總大于0,
則k>0,
故k的取值范圍是:(0,+∞).

點評 本題考查的知識點是正切函數(shù)的圖象和性質(zhì),結(jié)合已知及正切函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1的離心率e=$\frac{\sqrt{5}}{2}$,點A(0,1)與雙曲線上的點的最小距離是$\frac{2}{5}$$\sqrt{30}$,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)y=2sin(ωx+φ)在區(qū)間[0,$\frac{4}{3}$π]上單調(diào)遞增,且f($\frac{π}{3}$)=0,f($\frac{4}{3}$π)=2,則函數(shù)的最小正周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(log4x)2-log4x+5,x∈[1,16],求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=lnx-2ax3(a>0),若|f(x)|≥$\frac{1}{2}$對于任意的x∈(0,1]恒成立,則實數(shù)a的取值范圍為( 。
A.[$\frac{\sqrt{e}}{6}$,+∞)B.[$\frac{1}{6}$,$\frac{\sqrt{e}}{6}$]C.[$\frac{1}{6}$,+∞)D.[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列函數(shù)中,周期為2的奇函數(shù)為( 。
A.y=sin2xB.y=cos2πxC.y=cos[2(πx-$\frac{π}{4}$)]-$\frac{1}{2}$D.y=tan$\frac{π}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.下列各等式能否成立?為什么?
(1)2cosx=3;
(2)sin2x=0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.指出由正弦曲線y=sinx經(jīng)過怎樣的步驟可以得到正弦型曲線y=$\frac{1}{3}$sin(4x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.橢圓$\frac{x^2}{36}$+$\frac{y^2}{16}$=1上一點M到一個焦點的距離是5,則它到另一個焦點的距離是7.

查看答案和解析>>

同步練習(xí)冊答案