設(shè)點(diǎn)M在△ABC所在的平面內(nèi),且
AC
2-
AB
2=2
BC
AM
,那么動(dòng)點(diǎn)M的軌跡必經(jīng)過△ABC的( 。
A、重心B、垂心C、內(nèi)心D、外心
考點(diǎn):向量在幾何中的應(yīng)用
專題:計(jì)算題,平面向量及應(yīng)用
分析:由數(shù)量積的運(yùn)算結(jié)合題意可得|
MC
|=|
MB
|,即M在BC的垂直平分線上,過△ABC的外心.
解答: 解:∵
AC
2-
AB
2=2
BC
AM
,
∴2
BC
AM
=(
AC
+
AB
)•
BC

∴(
AC
-
AM
_
AB
-
AM
)•
BC
=0,
∴(
MC
+
MB
)•(
MC
-
MB
)=0,
∴|
MC
|=|
MB
|,
∴M在BC的垂直平分線上,∴M點(diǎn)的軌跡過△ABC的外心,
故選:D.
點(diǎn)評:本題考查平面向量的數(shù)量積的運(yùn)算,涉及三角形的外心的性質(zhì),屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知AB=1,BC=4,∠B=60°,則△ABC的面積是( 。
A、2
3
B、
3
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin4•tan2的值(  )
A、不大于0B、大于0
C、不小于0D、小于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)袋子中有5個(gè)大小相同的球,其中有3個(gè)黑球與2個(gè)紅球,如果從中任取兩個(gè)球,則取到兩個(gè)異色球的概率是( 。
A、
1
5
B、
3
10
C、
3
5
D、
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
log2(1-x)
2x-
1
2
的定義域是( 。
A、(-∞,-1)
B、[-1,1]
C、(-1,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=4x的焦點(diǎn)為F,過F的直線交拋物線于A,B兩點(diǎn),|AF|=3,則|BF|=( 。
A、
1
2
B、
4
3
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量X-N(2,a),若P(x<a)=0.32,則P(x>4-a)=( 。
A、0.32B、0.36
C、0.64D、0.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
4
-
y2
k
=1的左焦點(diǎn),做垂直于實(shí)軸的直線,與雙曲線交于A,B兩點(diǎn),則|AB|的長為(  )
A、
k2
2
B、k2
C、
k
2
D、k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個(gè)焦點(diǎn)為F1(-2,0)、F2(2,0),點(diǎn)P(3,
7
)在雙曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)過雙曲線C的右焦點(diǎn)的直線l交雙曲線于A,B兩點(diǎn),且|AB|=4
2
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案