在長方體ABCD-A1B1C1D1中,AB=AD=2
3
,CC1=
2
,則二面角C-BD-C1的大小是
 
考點:二面角的平面角及求法
專題:空間角
分析:設(shè)O為BD,AC的交點,則OC=OD=
2
3
2
=
6
,C1D=
2+12
=
14
.OC1=
14-6
=
8
.由此能求出二面角C1-BD-C的大小.
解答: 解:設(shè)O為BD,AC的交點,
則OC=OD=
2
3
2
=
6
,
C1D=
2+12
=
14

OC1=
14-6
=
8

設(shè)二面角C1-BD-C的大小為α
則sinα=
2
8
=
1
2
,∴α=30°,
∴二面角C1-BD-C的大小為30°.
故答案為:30°.
點評:本題考查二面角的大小的求法,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線x2=ay在x=2處的切線與直線2x-y-6=0平行,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},
(1)求A∪B,(∁UA)∩(∁UB); 
(2)若集合C={x|x>a},A⊆C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以Sn,Tn分別表示等差數(shù)列的{ an }和{ bn}的前n項和,已知
Sn
Tn
=
7n
n+3
,則
a5
b5
等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A為函數(shù)y=ln(-x2-2x+8)的定義域,集合B為函數(shù)y=x+
1
x+1
的值域.求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓M的離心率N,點F為橢圓的右焦點,點A、B分別為橢圓的左、右頂點,點M為橢圓的上頂點,且滿足A
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線B,當(dāng)直線M交橢圓于P、Q兩點時,使點F恰為N的垂心?若存在,求出直線P方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若函數(shù)f(x)在(a,b)上可導(dǎo),即f′(x)存在,且導(dǎo)函數(shù)f′(x)在(a,b)上也可導(dǎo),則稱f(x)在(a,b)上存在二階導(dǎo)函數(shù),記f″(x)=(f′(x))′.若f″(x)<0在(a,b)上恒成立,則稱函數(shù)f(x)在(a,b)上為凸函數(shù).已知函數(shù)f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
,若對任意實數(shù)m滿足|m|≤2時,函數(shù)f(x)在(a,b)上為凸函數(shù),則b-a的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C所對的邊,已知a=
3
,b=3,c=30°,則A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:4≤|x2-4x|<5.

查看答案和解析>>

同步練習(xí)冊答案