【題目】在甲地,隨著人們生活水平的不斷提高,進(jìn)入電影院看電影逐漸成為老百姓的一種娛樂(lè)方式.我們把習(xí)慣進(jìn)入電影院看電影的人簡(jiǎn)稱為“有習(xí)慣”的人,否則稱為“無(wú)習(xí)慣的人”.某電影院在甲地隨機(jī)調(diào)查了100位年齡在15歲到75歲的市民,他們的年齡的頻數(shù)分布和“有習(xí)慣”的人數(shù)如下表:
(1)以年齡45歲為分界點(diǎn),請(qǐng)根據(jù)100個(gè)樣本數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為“有習(xí)慣”的人與年齡有關(guān);
(2)已知甲地從15歲到75歲的市民大約有11萬(wàn)人,以頻率估計(jì)概率,若每張電影票定價(jià)為元,則在“有習(xí)慣”的人中約有的人會(huì)買票看電影(為常數(shù)).已知票價(jià)定為30元的某電影,票房達(dá)到了 69.3萬(wàn)元.某新影片要上映,電影院若將電影票定價(jià)為25元,那么該影片票房估計(jì)能達(dá)到多少萬(wàn)元?
參考公式:,其中.
參考臨界值
【答案】(1)見(jiàn)解析;(2)77萬(wàn)元.
【解析】分析:(1)根據(jù)統(tǒng)計(jì)數(shù)據(jù),可得列聯(lián)表,根據(jù)列聯(lián)表中的數(shù)據(jù),計(jì)算的值,即可得到結(jié)論;
(2)依題意, 有,∴.由此得到該影片票房.
詳解:
(1)
小于45歲 | 不小于45歲 | 合計(jì) | |
“有習(xí)慣”的人數(shù) | 52 | 18 | 70 |
“無(wú)習(xí)慣”的人數(shù) | 8 | 22 | 30 |
合計(jì) | 60 | 40 | 100 |
.
所以有的把握認(rèn)為“有習(xí)慣”的人與年齡有關(guān).
(2)依題意, 有,
∴.
∴(萬(wàn)元)
估計(jì)新影片上映票房能達(dá)到77萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是上的偶函數(shù).
(1)求值;
(2)解的不等式的解集;
(3)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B、C是△ABC的三個(gè)內(nèi)角,向量m=(-1, ),n=(cosA,sinA),且m·n=1.
(1)求角A;
(2)若=-3,求tanC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,.
(1)求證:平面平面;
(2)若點(diǎn)為中點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的焦點(diǎn)坐標(biāo)分別為,,為橢圓上一點(diǎn),滿足且
(1) 求橢圓的標(biāo)準(zhǔn)方程:
(2) 設(shè)直線與橢圓交于兩點(diǎn),點(diǎn),若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且滿足若函數(shù)有六個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)相鄰兩個(gè)最高點(diǎn)的距離等于.
(1)求的值;
(2)求出函數(shù)的對(duì)稱軸,對(duì)稱中心;
(3)把函數(shù)圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(橫坐標(biāo)不變),得到函數(shù),再把函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù),不需要過(guò)程,直接寫(xiě)出函數(shù)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中數(shù)列是公比為的等比數(shù)列,數(shù)列是公差為的等差數(shù)列.
(1)若,,分別寫(xiě)出數(shù)列和數(shù)列的通項(xiàng)公式;
(2)若是奇函數(shù),且,求;
(3)若函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱,且當(dāng)時(shí),函數(shù)取得最小值,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬(wàn)元時(shí)兩類產(chǎn)品的收益分別為0.125萬(wàn)元和0.5萬(wàn)元。
(1)分別寫(xiě)出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬(wàn)元資金,全部用于理財(cái)投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬(wàn)元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com