【題目】判斷下列命題是全稱命題還是特稱命題,并判斷其真假.

1)對數(shù)函數(shù)都是單調(diào)函數(shù).

2)至少有一個整數(shù),它既能被11整除,又能被9整除.

3x{x|x>0},x+≥2.

4

【答案】1)(3)是全稱命題,都是真命題.

【解析】

對每一個命題判斷是全稱命題還是特稱命題,再判斷其真假.

1)該命題可以寫成“所有對數(shù)函數(shù)都是單調(diào)函數(shù)”,所以該命題是全稱命題,因為對數(shù)函數(shù)都是單調(diào)函數(shù),所以它是真命題;

2)該命題可以改寫成“存在一個整數(shù),它既能被11整除,又能被9整除”,所以它是特稱命題,它是真命題;

3x{x|x>0},x+≥2,它是全稱命題,因為,所以它是真命題;

4,它是特稱命題,當時,,所以該命題是真命題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,點M,N分別為線段A1B,B1C的中點.

(1)求證:MN∥平面AA1C1C;

(2)若∠ABC=90°,AB=BC=2,AA1=3,求點B1到面A1BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某年級100名學(xué)生期中考試數(shù)學(xué)成績(單位:分)的頻率分布直方圖如圖所示,其中成績分組區(qū)間是[50,60),[60,70)[70,80),[8090),[90,100].

1)求圖中a的值,并根據(jù)頻率分布直方圖估計這100名學(xué)生數(shù)學(xué)成績的平均分;

2)從[70,80)[8090)分數(shù)段內(nèi)采用分層抽樣的方法抽取5名學(xué)生,求在這兩個分數(shù)段各抽取的人數(shù);

3)現(xiàn)從第(2)問中抽取的5名同學(xué)中任選2名參加某項公益活動,求選出的兩名同學(xué)均來自[70,80)分數(shù)段內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點及圓.

(1)若直線過點且與圓心的距離為1,求直線的方程;

(2)設(shè)過點的直線與圓交于兩點,當時,求以線段為直徑的圓的方程;

(3)設(shè)直線與圓交于兩點,是否存在實數(shù),使得過點的直線垂直平分弦?若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次函數(shù)

1)若分別表示將一枚質(zhì)地均勻的骰子先后拋擲兩次時第一次、第二次正面朝上出現(xiàn)的點數(shù),求滿足函數(shù)在區(qū)間[上是增函數(shù)的概率;

2)設(shè)點是區(qū)域內(nèi)的隨機點,求函數(shù)在區(qū)間上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】班級新年晚會設(shè)置抽獎環(huán)節(jié).不透明紙箱中有大小相同的紅球3個,黃球2個,且這5個球外別標有數(shù)字1、23、45.有如下兩種方案可供選擇:

方案一:一次性抽取兩球,若顏色相同,則獲得獎品;

方案二:依次有放回地抽取兩球,若數(shù)字之和大于5,則獲得獎品.

1)寫出按方案一抽獎的試驗的所有基本事件;

2)哪種方案獲得獎品的可能性更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面平面,底面為矩形,,,、分別為線段、上一點,且.

(1)證明:

(2)證明:平面,并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)是定義在(0,+∞)上的增函數(shù),且滿足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,曲線C的參數(shù)方程是,(為參數(shù)).

(1)求直線被曲線C截得的弦長;

(2)從極點作曲線C的弦,求各弦中點軌跡的極坐標方程.

查看答案和解析>>

同步練習冊答案