分析 (1)取PD的中點(diǎn)E,連結(jié)AE、EN,證明四邊形AMNE是平行四邊形,可得MN∥AE,利用線面平行的判定,即可得出結(jié)論.
(2)由線面垂直得PA⊥CD,由矩形性質(zhì)得AD⊥CD,由此能證明CD⊥MN.
(3)由等腰三角形性質(zhì)得AE⊥PD,又AE⊥CD,從而AE⊥平面PCD,由此能證明MN⊥平面PCD.
解答 證明:(1)如圖,取PD的中點(diǎn)E,連結(jié)AE、EN
則有EN∥CD∥AM,且EN=$\frac{1}{2}$CD=$\frac{1}{2}$AB=MA.
∴四邊形AMNE是平行四邊形.
∴MN∥AE.
∵AE?平面PAD,MN?平面PAD,
∴MN∥平面PAD.
(2)∵PA⊥矩形ABCD所在的平面,CD?平面ABCD,
∴PA⊥CD,
∵矩形ABCD中,AD⊥CD,PA∩AD=A,
∴CD⊥平面PAD,又AE?平面PAD,∴CD⊥AE,
∵M(jìn)N∥AE,∴CD⊥MN.
(3)∵PA=AD,E是PD中點(diǎn),∴AE⊥PD,
又AE⊥CD,CD∩PD=D,
∴AE⊥平面PCD,
∵M(jìn)N∥AE,∴MN⊥平面PCD.
點(diǎn)評 本題考查線面平行的證明,考查線線垂直的證明,考查線面垂直的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 5 | C. | 4 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com