若f(sinx)=2cosx+1,則f(
1
2
)=
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知中f(sinx)=2cosx+1,令sinx=
1
2
,可得cosx=±
3
2
,代入可得答案.
解答: 解:∵f(sinx)=2cosx+1,
當(dāng)sinx=
1
2
時(shí),cosx=±
3
2
,
故f(
1
2
)=2×(±
3
2
)+1=1±
3
,
故答案為:1±
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的值,本題也可利用平方關(guān)系和換元法求出函數(shù)的解析式,再求值,但相對(duì)比較復(fù)雜.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

tan4,tan5,tan6的大小關(guān)系是( 。
A、tan6>tan5>tan4
B、tan4>tan5>tan6
C、tan4>tan6>tan5
D、tan6>tan4>tan5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos2x+cosx的定義域?yàn)閇-2π,2π],則函數(shù)f(x)所有零點(diǎn)之和是(  )
A、0
B、
3
C、2π
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α終邊上一點(diǎn)P(-
3
,y),且sinα=
3
4
y,則cosα的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=kex-2,g(x)=
2kx-k-1
x

(1)若h(x)=f(x)-x+2,x∈R,有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)若k>0,對(duì)?x>0,均有f(x)≥g(x)成立,求正實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
+
b
+
c
=
0
,|
a
|=2,|
b
|=3,|
c
|=4,則
a
b
之間的夾角<
a
b
>的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若n是自然數(shù),證明:2n>n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x(2+a|x|),且關(guān)于x的不等式f(x+a)<f(x)的解集為A,若[-
1
2
,
1
2
]⊆A,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x>1,則
2x2-4x+4
x-1
的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案