設(shè)a,b是兩條不同的直線,α,β是兩個不同的平面( 。
A、若a∥b,a∥α,則b∥α
B、若a⊥b,a⊥α,b⊥β,則α⊥β
C、若α⊥β,a⊥β,則a∥α
D、若α∥β,a∥α,則a⊥β
考點:空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:根據(jù)空間線面關(guān)系的判定方法和幾何特征逐一分析四個答案中結(jié)論的真假,可得答案.
解答: 解:若a∥b,a∥α,則b∥α或b?α,故A錯誤;
若a⊥b,a⊥α,則b∥α或b?α,又由b⊥β,則α⊥β,故B正確;
若α⊥β,a⊥β,則a∥α或a?α,故C錯誤;
若α∥β,a∥α,則a∥β或a?β,故D錯誤;
故選:B
點評:本題考查的知識點是空間中直線與直線之間的位置關(guān)系,熟練掌握空間線面關(guān)系的判定方法和幾何特征是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知向量
OA
=(1,1),
OB
=(2,3),且
OC
OA
,
AC
OB
,則向量
OC
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將全體正整數(shù)排成一個三角形數(shù)陣:按照如圖所示排列的規(guī)律,第8行從左向右的第1個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在等腰三角形ABC中,底邊BC=2,
AD
=
DC
,2
AE
=3
EB
,若
BD
AC
=-
1
2
,則
CE
AB
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),對任意實數(shù)t都有f(2+t)=f(2-t)成立,那么在函數(shù)值f(-1)、f(0)、f(2)、f(5)中,最小的一個不可能是( 。
A、f(5)B、f(2)
C、f(-1)D、f(1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=tan(x+1)+tan(x+2)+tan(x+3)+…+tan(x+2015)圖象的對稱中心是( 。
A、(-1007,0)
B、(-1008,0)
C、(1007,0)
D、(1008,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線
x=-2+2t
y=1-2t
(t為參數(shù))與坐標軸的交點是(  )
A、(0,1)、(
1
2
,0)
B、(0,
1
2
)、(
1
2
,0)
C、(0,-1)、(-1,0)
D、(0,
1
2
)、(-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當0<x<1時,f(x)=
x
lgx
,則下列大小關(guān)系正確的是( 。
A、f2(x)<f(x2)<f(x)
B、f(x2)<f2(x)<f(x)
C、f(x)<f(x2)<f2(x)
D、f(x2)<f(x)<f2(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的首項a1=2,前n項和Sn滿足an+1=Sn+2(n∈N*).
(1)求數(shù)列{an}的通項公式
(2)若bn=2log2an,對一切n∈N*,
1
b1b2
+
1
b2b3
+
1
b3b4
+…+
1
bnbn+1
<t恒成立,求實數(shù)t的最小值.

查看答案和解析>>

同步練習冊答案