一個三棱柱的底面是正三角形,側(cè)棱 垂直于底面,它的三視圖如圖所示.
(1)請畫出它的直觀圖;
(2)求這個三棱柱的表面積和體積.
考點:由三視圖求面積、體積,斜二測法畫直觀圖
專題:
分析:由該棱柱的三視圖可知,該棱柱是正三棱柱,其中高是4,底面邊長是2
3
,再由表面積、體積公式即可得出答案.
解答: 解:(1)直觀圖如圖所示;
(2)由三視圖可得,棱柱的高=側(cè)視圖的高=4,底面的高=側(cè)視圖的寬=3
又∵底面是一個正三角形
∴底面邊長為2
3

則棱柱的表面積是
1
2
×2
3
×3×2
+3×2
3
×4=30
3
,V=
1
2
×2
3
×3
×4=12
3
點評:本題考點是由三視圖求幾何體的面積、體積,考查對三視圖的理解與應(yīng)用,主要考查三視圖與實物圖之間的關(guān)系,用三視圖中的數(shù)據(jù)還原出實物圖的數(shù)據(jù),再根據(jù)相關(guān)的公式求表面積與體積,本題求的是本棱柱的體積.三視圖的投影規(guī)則是:“主視、俯視 長對正;主視、左視高平齊,左視、俯視 寬相等”.三視圖是新課標(biāo)的新增內(nèi)容,在以后的高考中有加強的可能.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在實數(shù)集R上的偶函數(shù),且滿足f(x-1)=-f(x),則方程f(x)=0在區(qū)間[-2,2]內(nèi)至少有( 。﹤解.
A、3B、4C、5D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二元一次不等式組
x+y≤4
y≥x
x≥1
對應(yīng)的平面區(qū)域為M
(1)若點P(x,y)是區(qū)域M內(nèi)的任意一點,求目標(biāo)函數(shù)Z=
y-1
x
的最大值;
(2)若點P(x,y)是區(qū)域M內(nèi)的任意一點,求點P滿足條件(x-1)2+(y-1)2≤1的概率;
(3)若點Q(x,y)是不等式組
1≤x≤2
0≤y≤2
表示的區(qū)域內(nèi)的任意一點,求點Q落在區(qū)域M內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點求證:平面EFG∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列各式的值.
(1)0.25-2+(
8
27
 -
1
3
-
1
2
lg16-2lg5+(
1
2
0     
(2)
1
sin10°
-
3
cos10°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
9-6x+x2
+
x2+8x+16

(1)求f(x)≥f(4)的解集;
(2)設(shè)函數(shù)g(x)=kx-3k,k∈R,若不等式f(x)≤g(x)的解集為空集,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+
3
sinxcosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)當(dāng)x[-
π
12
,
π
12
]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+xlnx的圖象在點x=e(e為自然對數(shù)的底數(shù))處的切線斜率為3.
(1)求實數(shù)a的值;
(2)若k∈Z,且k<
f(x)
x-1
對任意x>e2恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-3x2+ax(a∈R).
(1)當(dāng)a=-9時,求函數(shù)f(x)的極大值;
(2)若函數(shù)f(x)的圖象與函數(shù)ϕ(x)=-xlnx的圖象有三個不同的交點,求a的取值范圍;
(3)設(shè)g(x)=|f(x)|,當(dāng)a>0時,求函數(shù)g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案