【題目】如圖,在正方體ABCD-A1B1C1D1中,E、F、P、Q分別是BC、C1D1、AD1、BD的中點(diǎn).
(1)求證:PQ∥平面DCC1D1;
(2)求證:AC⊥EF.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)連接,,由,分別為、的中點(diǎn),知,由此能夠證明平面.
(2)作中點(diǎn),連接,,由,分別是,的中點(diǎn),知,由面,知面,故,再由,得到平面,由此能夠證明.
(1)如圖所示,連接CD1.
∵P、Q分別為AD1、AC的中點(diǎn).∴PQ∥CD1.
而CD1平面DCC1D1,PQ//平面DCC1D1,
∴PQ∥平面DCC1D1.
(2)如圖,取CD中點(diǎn)H,連接EH,FH.
∵F、H分別是C1D1、CD的中點(diǎn),在平行四邊形CDD1C1中,FH//D1D.
而D1D⊥面ABCD,
∴FH⊥面ABCD,而AC面ABCD,
∴AC⊥FH.
又E、H分別為BC、CD的中點(diǎn),∴EH∥DB.
而AC⊥BD,∴AC⊥EH.
因?yàn)?/span>EH、FH是平面FEH內(nèi)的兩條相交直線,所以AC⊥平面EFH,
而EF平面EFH,所以AC⊥EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若在定義域內(nèi)存在實(shí)數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)有“漂移點(diǎn)”.
(1)用零點(diǎn)存在定理證明:函數(shù)f(x)=x2+2x在[0,1]上有“漂移點(diǎn)”;
(2)若函數(shù)g(x)=lg()在(0,+∞)上有“漂移點(diǎn)”,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線x2﹣ =1(b>0)的左、右焦點(diǎn)分別為F1 , F2 , 直線l過F2且與雙曲線交于A,B兩點(diǎn).
(1)直線l的傾斜角為 ,△F1AB是等邊三角形,求雙曲線的漸近線方程;
(2)設(shè)b= ,若l的斜率存在,且( ) =0,求l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓M:x2+y2+ay=0(a>0),直線l:x-7y-2=0,且直線l與圓M相交于不同的兩點(diǎn)A,B.
(1)若a=4,求弦AB的長(zhǎng);
(2)設(shè)直線OA,OB的斜率分別為k1,k2,若k1+k2=,求圓M的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l1 , l2分別是函數(shù)f(x)= 圖象上點(diǎn)P1 , P2處的切線,l1與l2垂直相交于點(diǎn)P,且l1 , l2分別與y軸相交于點(diǎn)A,B,則△PAB的面積的取值范圍是( 。
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,若函數(shù)y=f(f(x))-a 恰有5個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知曲線C1:(α為參數(shù)),在以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρcos =-,曲線C3:ρ=2sin θ.
(1)求曲線C1與C2的交點(diǎn)M的直角坐標(biāo);
(2)設(shè)點(diǎn)A,B分別為曲線C2,C3上的動(dòng)點(diǎn),求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=.
(Ⅰ)若f(x)是奇函數(shù),求實(shí)數(shù)a的值;
(Ⅱ)當(dāng)0<x≤1時(shí),|f(2x)-f(x)|≥1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在直二面角中,四邊形是邊長(zhǎng)為的正方形,,且.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在線段(不包含端點(diǎn))上是否存在點(diǎn),使得與平面所成的角為;若存在,寫出的值,若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com