已知正方形ABCD的邊長(zhǎng)為2,若在該正方形內(nèi)任取一點(diǎn)P,則使得AP≤1的概率為
 
考點(diǎn):幾何概型
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:由扇形面積公式,結(jié)合題意算出滿足條件的點(diǎn)P對(duì)應(yīng)的圖形的面積,求出正方體ABCD的面積并利用幾何概型計(jì)算公式,即可算出所求概率.
解答: 解:當(dāng)點(diǎn)P滿足|PA|≤1時(shí),P在以A為圓心、半徑為1的圓內(nèi)
其面積為S'=
1
4
π×12=
π
4

∵正方形ABCD邊長(zhǎng)為2,得正方形的面積為S=22=4
∴所求概率為P=
S′
S
=
π
16

故答案為:
π
16
點(diǎn)評(píng):本題在正方形中求點(diǎn)P滿足條件的概率,著重考查了扇形面積、正方形面積計(jì)算公式和幾何概型計(jì)算公式等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的周期是π,最大值為3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)E是圓心為O1半徑為2的半圓弧上從點(diǎn)B數(shù)起的第一個(gè)三等分點(diǎn),點(diǎn)F是圓心為O2半徑為1的半圓弧的中點(diǎn),AB、CD分別是兩個(gè)半圓的直徑,O1O2=2,直線O1O2與兩個(gè)半圓所在的平面均垂直,直線AB、DC共面.
(1)求三棱錐D-ABE的體積;
(2)求直線DE與平面ABE所成的角的正切值;
(3)求直線AF與BE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,一個(gè)質(zhì)點(diǎn)從A(a1,a2)出發(fā)沿圖中路線依次經(jīng)過A(a1,a2),B(a3,a4),C(a5,a6),D(a7,a8),…,按此規(guī)律一直運(yùn)動(dòng)下去,則a2014+a2015+a2016=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)偽代碼如圖所示,輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(π+α)=
3
5
,α∈(π,
2
),則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為落實(shí)素質(zhì)教育,某中學(xué)擬從4個(gè)重點(diǎn)研究性課題和6個(gè)一般研究性課題中各選2個(gè)課題作為本年度該校啟動(dòng)的課題項(xiàng)目,若重點(diǎn)課題A和一般課題B至少有一個(gè)被選中的不同選法種數(shù)是k,那么二項(xiàng)式(1+kx26的展開式中,x4的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某四棱錐,底面是邊長(zhǎng)為2的正方形,且俯視圖如圖所示,關(guān)于該四棱錐的下列結(jié)論中:
①四棱錐中至少有兩組側(cè)面互相垂直;
②四棱錐的側(cè)面中可能存在三個(gè)直角三角形;
③四棱錐中不可能存在四組互相垂直的側(cè)面;
④四棱錐的四個(gè)側(cè)面不可能都是等腰三角形.
所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足不等式組
2x+y≤4
x≥0
y≥0
,則當(dāng)
y-x
x+1
≤2a恒成立時(shí),實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案