8.已知集合A={1,2},B={x|x2+ax+b=0},若A=B,則a+b=-1.

分析 由題意可得方程x2+ax+b=0的兩個(gè)根是1,3,根據(jù)方程的根與系數(shù)關(guān)系可求a,b即可.

解答 解:A={x|x2+ax+b=0}=B={1,2}
∴方程x2+ax+b=0的兩個(gè)根是1,2
由方程的根與系數(shù)關(guān)系可得$\left\{\begin{array}{l}{1+2=-a}\\{1×2=b}\end{array}\right.$
∴a=-3,b=2
∴a+b=-1.
故答案為:-1.

點(diǎn)評(píng) 本題主要考查了集合相等條件的應(yīng)用,方程的根與系數(shù)關(guān)系的應(yīng)用,屬于基礎(chǔ)試題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知拋物線$y=-\frac{3}{16}(x-1)(x-9)$與x軸交于A,B兩點(diǎn),對(duì)稱軸與拋物線交于點(diǎn)C,與x軸交于點(diǎn)D,⊙C的半徑為2,G為⊙C上一動(dòng)點(diǎn),P為AG的中點(diǎn),則DP的最大值為( 。
A.$\frac{7}{2}$B.$\frac{{\sqrt{41}}}{2}$C.$\frac{{\sqrt{34}}}{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,3),若向量$\overrightarrow{a}$-λ$\overrightarrow$與向量$\overrightarrow{c}$=(-5,-6)共線,則λ的值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{y≤3}\\{3x+7y-24≤0}\\{x+3y-8≥0}\end{array}\right.$,則z=x+2y的最大值是( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知球內(nèi)接正三棱錐的底邊邊長為3,高為4,求外接球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知定義在R上的函數(shù)f(x)是奇函數(shù),對(duì)x∈R都有f(2+x)=-f(2-x),則f(2016)=(  )
A.2B.-2C.4D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知全集U=R,集合A={x|(x+2)(x-1)>0},B={x|-4≤x<0},則A∪(∁UB)為(  )
A.{x|x<-2或x≥0}B.{x|x<-2或x>1}C.{x|x<-4或x≥0}D.{x|x<-4或x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}中,a2+a4=16,a5-a3=4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{4}{{a}_{n}•{a}_{n+1}}$,求證b1+b2+…+bn≥$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)等差數(shù)列{an}前n項(xiàng)和Sn,a3+a8+a13=C,a4+a14=2C,其中C<0,則Sn在n等于7時(shí)取到最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案