【題目】圖(1)為東方體育中心,其設計方案側面的外輪廓線如圖(2)所示;曲線是以點為圓心的圓的一部分,其中,曲線是拋物線的一部分;恰好等于圓的半徑,與圓相切且.

1)若要求米,米,求的值;

2)當時,若要求不超過45米,求的取值范圍.

【答案】1;(2.

【解析】

(1)根據(jù)圓的半徑,求出的值,再利用圓的方程求出點的坐標,代入拋物線方程可求出的值;

(2)根據(jù)圓的半徑,利用拋物線方程求出的值,寫出的表達式,上時,恒成立即可.

(1)依題意得,所以所以,

此時圓,

,,

所以,所以,

將點代入,解得,

綜上:.

(2)因為圓的半徑為,所以,

代入可得,所以,

,,解得,

所以對任意恒成立,

所以對任意恒成立,

(,,

因為,,

所以為單調(diào)遞減函數(shù),

所以,函數(shù)取得最小值,

所以,

解得.

所以的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】橢圓經(jīng)過為坐標原點,線段的中點在圓上.

(1)求的方程;

(2)直線不過曲線的右焦點,與交于兩點,且與圓相切,切點在第一象限, 的周長是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓為坐標原點,動點在圓外,過點作圓的切線,設切點為.

(1)若點運動到處,求此時切線的方程;

(2)求滿足的點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

1)若函數(shù)fx)在處有極值,求函數(shù)fx)的最大值;

2)是否存在實數(shù)b,使得關于x的不等式上恒成立?若存在,求出b的取值范圍;若不存在,說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線.

(1)若直線不經(jīng)過第四象限,求的取值范圍;

(2)若直線軸負半軸于,交軸正半軸于,求的面積的最小值并求此時直線的方程;

(3)已知點,若點到直線的距離為,求的最大值并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若,判斷的奇偶性,并說明理由;

2)若,,求上的最小值;

3)若,有三個不同實根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖像向左平移個單位長度,再將圖像上所有點的橫坐標伸長到原來的倍(縱坐標不變),得到的圖像.

(1)求的單調(diào)遞增區(qū)間;

(2)若對于任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若存在與正實數(shù),使得成立,則稱函數(shù)處存在距離為的對稱點,把具有這一性質(zhì)的函數(shù)稱之為“型函數(shù)”.

1)設,試問是否是“型函數(shù)”?若是,求出實數(shù)的值;若不是,請說明理由;

2)設對于任意都是“型函數(shù)”,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的定義域D,并判斷的奇偶性;

2)如果當時,的值域是,求a的值;

3)對任意的m,,是否存在,使得,若存在,求出t,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案