【題目】圖(1)為東方體育中心,其設計方案側面的外輪廓線如圖(2)所示;曲線是以點為圓心的圓的一部分,其中,曲線是拋物線的一部分;且恰好等于圓的半徑,與圓相切且.
(1)若要求米,米,求與的值;
(2)當時,若要求不超過45米,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】橢圓經(jīng)過為坐標原點,線段的中點在圓上.
(1)求的方程;
(2)直線不過曲線的右焦點,與交于兩點,且與圓相切,切點在第一象限, 的周長是否為定值?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),.
(1)若函數(shù)f(x)在處有極值,求函數(shù)f(x)的最大值;
(2)是否存在實數(shù)b,使得關于x的不等式在上恒成立?若存在,求出b的取值范圍;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線.
(1)若直線不經(jīng)過第四象限,求的取值范圍;
(2)若直線交軸負半軸于,交軸正半軸于,求的面積的最小值并求此時直線的方程;
(3)已知點,若點到直線的距離為,求的最大值并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖像向左平移個單位長度,再將圖像上所有點的橫坐標伸長到原來的倍(縱坐標不變),得到的圖像.
(1)求的單調(diào)遞增區(qū)間;
(2)若對于任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在與正實數(shù),使得成立,則稱函數(shù)在處存在距離為的對稱點,把具有這一性質(zhì)的函數(shù)稱之為“型函數(shù)”.
(1)設,試問是否是“型函數(shù)”?若是,求出實數(shù)的值;若不是,請說明理由;
(2)設對于任意都是“型函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的定義域D,并判斷的奇偶性;
(2)如果當時,的值域是,求a的值;
(3)對任意的m,,是否存在,使得,若存在,求出t,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com