已知函數(shù)
是定義在
上的奇函數(shù),當(dāng)
時(shí),
(其中
e是自然界對(duì)數(shù)的底,
)
(1)設(shè)
,求證:當(dāng)
時(shí),
;
(2)是否存在實(shí)數(shù)
a,使得當(dāng)
時(shí),
的最小值是3 ?如果存在,求出實(shí)
數(shù)
a的值;如果不存在,請(qǐng)說明理
(Ⅰ)略 (Ⅱ)存在實(shí)數(shù)
,使得當(dāng)
時(shí),
有最小值3
本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
(1)中根據(jù)函數(shù)的奇函數(shù)的性質(zhì)得到分段函數(shù)的解析式,然后當(dāng)a=-1時(shí),得到解析式,運(yùn)用導(dǎo)數(shù)的思想來分析單調(diào)性得到最小值的問題。
(2)根據(jù)已知中假設(shè)存在最值,利用導(dǎo)數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系對(duì)于參數(shù)a分類討論得到結(jié)論
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
圖象上一點(diǎn)
處
的切線方程為y= -3x+2ln2+2.
(1)求a,b的值;
(2)若方程
在
內(nèi)有兩個(gè)不等實(shí)根,求m的取值范圍(其
中
為自然對(duì)數(shù)的底數(shù));
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
曲線
在點(diǎn)
處的切線為l,則l上的點(diǎn)到
上的
點(diǎn)的最近距離是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
我們把形如
的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)數(shù):在函數(shù)解析式兩邊求對(duì)數(shù)得
,兩邊對(duì)
求導(dǎo)數(shù),得
于是
,運(yùn)用此方法可以求得函數(shù)
在(1,1)處的切線方程是 _________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)
在區(qū)間
上的最小值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,要建一間體積為
,墻高為
的長(zhǎng)方體形的簡(jiǎn)易倉庫. 已知倉庫屋頂每平方米的造價(jià)為500元,墻壁每平方米的造價(jià)為400元,地面造價(jià)忽略不計(jì). 問怎樣設(shè)計(jì)倉庫地面的長(zhǎng)與寬,能使總造價(jià)最低?最低造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知點(diǎn)
在曲線
上,
為曲線在點(diǎn)
處的切線的傾斜角,則
的取值范圍是_____________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
(本小題滿分12分)
已知函數(shù)
,曲線
在點(diǎn)(
)處的
切線方程是
(Ⅰ)求
的值;
(Ⅱ)設(shè)
若當(dāng)
時(shí),恒有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
曲線
在點(diǎn)
處的切線方程是
.
查看答案和解析>>