已知f(x)=
log2x+3(x>0)
x2+1(x<0)
,若f(a)=5,則a=
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知條件,利用分段函數(shù)的性質(zhì),由f(a)=5,能求出a.
解答: 解:∵f(x)=
log2x,x>0
x2+1,x<0
,f(a)=5,
∴當(dāng)a>0時(shí),log2a+3=5,解得a=4;
當(dāng)a<0時(shí),a2+1=5,解得a=2(舍),或a=-2.
故答案為:4或-2
點(diǎn)評:本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要注意分段函數(shù)的性質(zhì)和應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,三個(gè)內(nèi)角A、B、C的對應(yīng)邊為a、b、c,B=
π
3

(Ⅰ)當(dāng)A=
π
4
時(shí),求sinC的值;
(Ⅱ)設(shè)f(A)=sinA+sin(
3
-A),求f(A)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lgsinx+
1
16-x2
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2x+y=2,x,y∈R,則4x+2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x2-2x<0},B={x|
x
x-1
>0},則A∩B
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|
x+2
x
≤0}
,則集合∁UA等于               ( 。
A、{x|x<-2或x>0}
B、{x|x≤-2或x>0}
C、{x|x<-2或x≥0}
D、{x|x≤-2或x≥0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l與圓x2+y2=1相切,并且在兩坐標(biāo)軸上的截距之和等于
3
,則直線l與兩坐標(biāo)軸所圍成的三角形的面積等于( 。
A、
3
2
B、
1
2
C、1或3
D、
1
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角α在第三象限,且tanα=
3
4
,則sin(α+
π
2
)=( 。
A、
3
5
B、
4
5
C、-
4
5
D、-
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x-1
x-2
,則x=2為f(x)的(  )
A、可去間斷點(diǎn)B、連續(xù)點(diǎn)
C、跳躍間斷點(diǎn)D、無窮間斷點(diǎn)

查看答案和解析>>

同步練習(xí)冊答案