【題目】如圖在三棱錐中,均為等腰三角形,且,

1)判斷是否成立?并給出證明;

2)求直線與平面所成角的正弦值.

【答案】1不成立,證明見解析;(2.

【解析】

1)假設(shè),得平面,由線面垂直的性質(zhì)可得,與矛盾,從而可得不成立;

2)取的中點(diǎn),的中點(diǎn),證明平面,進(jìn)而可得平面平面,再取的中點(diǎn),證明平面,根據(jù)線面角的定義知為直線與平面所成的角,在直角三角形中求解.

1不成立,證明如下:

假設(shè),因?yàn)?/span>,且,

所以平面

所以,這與已知矛盾,

所以不成立.

2)如圖,取的中點(diǎn),的中點(diǎn),連接,,

由已知計(jì)算得,

由已知得,,且

所以平面,所以平面平面

的中點(diǎn),連接,

,平面,從而是直線與平面所成的角,

因?yàn)?/span>,所以,即直線與平面所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若不等式對(duì)任意的恒成立,求的取值范圍;

2)當(dāng)時(shí),記的最小值為,正實(shí)數(shù),,滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐,是正三角形,為其中心.面,,,的中點(diǎn),.

(1)證明:;

(2)求與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求證:對(duì)于任意,不等式恒成立;

(Ⅱ)設(shè)函數(shù),,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在①acosB+bcosA=cosC;②2asinAcosB+bsin2A=a;③△ABC的面積為S,且4S=(a2+b2-c2),這三個(gè)條件中任意選擇一個(gè),填入下面的問題中,并求解,在銳角ABC中,角A,BC所對(duì)的邊分別為a,bc,函數(shù)=2sinωxcosωx+2cos2ωx的最小正周期為πc在[0,]上的最大值,求a-b的取值范圍.注:如果選擇多個(gè)條件分別解答,那么按第一個(gè)解答計(jì)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,底面為菱形,且直線又棱 的中點(diǎn),

(Ⅰ) 求證:直線

(Ⅱ) 求直線與平面的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,分別為的中點(diǎn),,將沿折起,得到四棱錐,的中點(diǎn).

1)證明:平面;

2)當(dāng)正視圖方向與向量的方向相同時(shí),的正視圖為直角三角形,求此時(shí)二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,分別為的中點(diǎn),,將沿折起,得到四棱錐,的中點(diǎn).

1)證明:平面

2)當(dāng)正視圖方向與向量的方向相同時(shí),此時(shí)的正視圖的面積為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知點(diǎn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)設(shè)曲線與曲線相交于,兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案