【題目】如圖在三棱錐中,和均為等腰三角形,且,.
(1)判斷是否成立?并給出證明;
(2)求直線與平面所成角的正弦值.
【答案】(1)不成立,證明見解析;(2).
【解析】
(1)假設(shè),得平面,由線面垂直的性質(zhì)可得,與矛盾,從而可得不成立;
(2)取的中點(diǎn),的中點(diǎn),證明平面,進(jìn)而可得平面平面,再取的中點(diǎn),證明平面,根據(jù)線面角的定義知為直線與平面所成的角,在直角三角形中求解.
(1)不成立,證明如下:
假設(shè),因?yàn)?/span>,且,
所以平面,
所以,這與已知矛盾,
所以不成立.
(2)如圖,取的中點(diǎn),的中點(diǎn),連接,,,
由已知計(jì)算得,
由已知得,,且,
所以平面,所以平面平面.
取的中點(diǎn),連接,,
則,平面,從而是直線與平面所成的角,
因?yàn)?/span>,,所以,即直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若不等式對(duì)任意的恒成立,求的取值范圍;
(2)當(dāng)時(shí),記的最小值為,正實(shí)數(shù),,滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求證:對(duì)于任意,不等式恒成立;
(Ⅱ)設(shè)函數(shù),,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①acosB+bcosA=cosC;②2asinAcosB+bsin2A=a;③△ABC的面積為S,且4S=(a2+b2-c2),這三個(gè)條件中任意選擇一個(gè),填入下面的問題中,并求解,在銳角△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,函數(shù)=2sinωxcosωx+2cos2ωx的最小正周期為π,c為在[0,]上的最大值,求a-b的取值范圍.注:如果選擇多個(gè)條件分別解答,那么按第一個(gè)解答計(jì)分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,,分別為的中點(diǎn),,將沿折起,得到四棱錐,為的中點(diǎn).
(1)證明:平面;
(2)當(dāng)正視圖方向與向量的方向相同時(shí),的正視圖為直角三角形,求此時(shí)二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,分別為的中點(diǎn),,將沿折起,得到四棱錐,為的中點(diǎn).
(1)證明:平面;
(2)當(dāng)正視圖方向與向量的方向相同時(shí),此時(shí)的正視圖的面積為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知點(diǎn),的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)設(shè)曲線與曲線相交于,兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com