(B題)已知空間四邊形OABC,M、N分別是對邊OA、BC的中點,點G在線段MN上,且
MG
GN
=2,設(shè)
OG
=x
OA
+y
OB
+z
OC
,則x、y、z的值分別是( 。
A、x=
1
3
,y=
1
3
,z=
1
3
B、x=
1
3
,y=
1
3
,z=
1
6
C、x=
1
3
,y=
1
6
,z=
1
3
D、x=
1
6
,y=
1
3
,z=
1
3
考點:平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:利用向量的三角形法則及平行四邊形法則和向量形式的中點公式即可得出.
解答: 解:∵M(jìn)、N分別是對邊OA、BC的中點,
OM
=
1
2
OA
,
ON
=
1
2
(
OB
+
OC
)

OG
=
OM
+
MG
=
OM
+
2
3
MN
=
OM
+
2
3
(
ON
-
OM
)=
1
3
OM
+
2
3
ON
=
1
6
OA
+
1
3
OB
+
1
3
OC

因此x=
1
6
,y=z=
1
3

故選D.
點評:本題考查了向量的三角形法則及平行四邊形法則,利用平面向量基本定理求系數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,(a+b+c)(a+b-c)=3ab,2cosAsinB=sinC,則△ABC的形狀是( 。
A、等邊三角形
B、等腰三角形
C、直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)在R上可導(dǎo),滿足 x•f′(x)+f(x)>0,則下列不等式一定成立的是( 。
A、2f(3)>3f(2)
B、2f(2)<3f(3)
C、2f(3)<3f(2)
D、2f(2)>3f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,S10=120,那么a5+a6的值是( 。
A、12B、24C、36D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中若A=60°,B=45°,b=2
2
,則a為( 。
A、2
3
B、2
6
C、
3
8
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別是AA1,A1D1,A1B1,BB1的中點,則異面直線EF與GH所成的角的大小為( 。
A、30°B、45°
C、60°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用1,2,3,4這四個數(shù)字可排成必須含有重復(fù)數(shù)字的四位數(shù)有(  )
A、265個B、232個
C、128個D、24個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為公差不為0的等差數(shù)列,a1=3,且a1、a4、a13成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=2nan,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-2x-4=0一條斜率等于1的直線l與圓C交于A,B兩點,
(1)求弦AB最長時直線l的方程;
(2)求△ABC面積最大時直線l的方程;
(3)若坐標(biāo)原點O在以AB為直徑的圓內(nèi),求直線l在y軸上的截距范圍.

查看答案和解析>>

同步練習(xí)冊答案