18.已知函數(shù)f(x)滿足f(log2x)=$\sqrt{{x}^{2}-2x+1}$,若a<b<c,且f(a)>f(c)>f(b),則( 。
A.a<0,b<0,c<0B.a<0,b≥0,c>0C.2-a<2cD.2a+2c<2

分析 先求出函數(shù)f(x)的解析式,畫出函數(shù)的圖象,結(jié)合函數(shù)的單調(diào)性判斷即可.

解答 解:∵f(log2x)=$\sqrt{{x}^{2}-2x+1}$=|x-1|,
令${log}_{2}^{x}$=a,則x=2a,
∴f(a)=|2a-1|,
∴f(x)=|2x-1|=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{1{-2}^{x},x<0}\end{array}\right.$,
畫出函數(shù)f(x)的圖象,如圖示:
若a<b<c,且f(a)>f(c)>f(b),
若a<b<c,且f(a)>f(c)>f(b),
則a<0,b≥0,c>0,
故選:B.

點(diǎn)評 本題考查了對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列結(jié)論錯(cuò)誤的是( 。
A.命題“若x2-3x-4=0,則x=4”的逆否命題是“若x≠4,則x2-3x-4≠0”
B.命題“若m>0,則方程x2+x-m=0有實(shí)根”的逆命題為真命題
C.“x=4”是“x2-3x-4=0”的充分條件
D.命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)定義在[-4,4]上的奇函數(shù),且在[-4,4]上單調(diào)遞增,若f(m+1)+f(m-3)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.水平相當(dāng)?shù)募、乙兩支籃球隊(duì)進(jìn)行籃球比賽,規(guī)定“三場兩勝制”,即先贏兩場者勝且整個(gè)比賽結(jié)束,分別在下列條件下.求乙隊(duì)獲勝的概率:
(1)若甲隊(duì)先贏-場;
(2)若乙隊(duì)先贏一場.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知tanα=3,求:
(1)$\frac{sin(α-3π)-2cos(\frac{2015π}{2}+α)}{-sin(-α)+cos(π+α)}$.
(2)2sin2α+sinαcosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若α∈[0,2π),cos$\frac{7π}{6}$=cosα,利用余弦線可以求得α=$\frac{5π}{6}$(α≠$\frac{7π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=|3sinx+4cosx|的最小正周期是( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知sinα+cosα=-$\frac{1}{5}$.
(1)求sin($\frac{π}{2}$+α)cos($\frac{π}{2}$-α)的值;
(2)若$\frac{π}{2}$<α<π,求$\frac{1}{sin(π-α)}$+$\frac{1}{cos(π-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l:2x-y-1=0,動(dòng)點(diǎn)P(x,y)在直線l上.
(1)若A(0,4),B(-2,0),求|PA|+|PB|的最小值并求此時(shí)點(diǎn)P的坐標(biāo);
(2)若A(0,4),C(4,1),求|PC|-|PA|的最大值并求此時(shí)點(diǎn)P的坐際.

查看答案和解析>>

同步練習(xí)冊答案