【題目】實(shí)數(shù)m取什么數(shù)值時(shí),復(fù)數(shù)z=m2﹣1+(m2﹣m﹣2)i分別是:
(1)實(shí)數(shù)?
(2)虛數(shù)?
(3)純虛數(shù)?
(4)表示復(fù)數(shù)z的點(diǎn)在復(fù)平面的第四象限?

【答案】
(1)解:∵復(fù)數(shù)z=m2﹣1+(m2﹣m﹣2)i,

∴當(dāng)m2﹣m﹣2=0,即m=﹣1,或m=2時(shí),復(fù)數(shù)為實(shí)數(shù)


(2)解:當(dāng)m2﹣m﹣2≠0,即m≠﹣1,且m≠2時(shí),復(fù)數(shù)為虛數(shù)
(3)解:當(dāng) m2﹣m﹣2≠0,且m2﹣1=0時(shí),即m=1時(shí),復(fù)數(shù)為純虛數(shù)
(4)解:當(dāng)m2﹣1>0,且m2﹣m﹣2<0時(shí),即 1<m<2時(shí),表示復(fù)數(shù)z的點(diǎn)在復(fù)平面的第四象限
【解析】由復(fù)數(shù)的解析式可得,(1)當(dāng)虛部等于零時(shí),復(fù)數(shù)為實(shí)數(shù);(2)當(dāng)虛部不等于零時(shí),復(fù)數(shù)為虛數(shù);(3)當(dāng)實(shí)部等于零且虛部不等于零時(shí),復(fù)數(shù)為純虛數(shù);(4)當(dāng)實(shí)部大于零且虛部小于零時(shí),復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第四象限.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x>0,y>0,z>0,且xyz=1,求證:x3+y3+z3≥xy+yz+xz.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用反證法證明命題:“已知x∈R,a=x2﹣1,b=2x+2,則a,b中至少有一個(gè)不小于0”,反設(shè)正確的是(
A.假設(shè)a,b都不大于0
B.假設(shè)a,b至多有一個(gè)大于0
C.假設(shè)a,b都大于0
D.假設(shè)a,b都小于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論中正確的是(
A.導(dǎo)數(shù)為零的點(diǎn)一定是極值點(diǎn)
B.如果在x0附近的左側(cè)f′(x)>0,右側(cè)f′(x)<0,那么f(x0)是極大值
C.如果在x0附近的左側(cè)f′(x)>0,右側(cè)f′(x)<0,那么f(x0)是極小值
D.如果在x0附近的左側(cè)f′(x)<0,右側(cè)f′(x)>0,那么f(x0)是極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m,n是兩條不同直線,α,β是兩個(gè)不同平面,則下列命題正確的是(
A.若α,β垂直于同一平面,則α與β平行
B.若m,n平行于同一平面,則m與n平行
C.若α,β不平行,則在α內(nèi)不存在與β平行的直線
D.若m,n不平行,則m與n不可能垂直于同一平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論錯(cuò)誤的是(
A.命題“若p,則q”與命題“若q,則p”互為逆否命題
B.命題p:x∈[0,1],ex≥1,命題q:x∈R,x2+x+1<0,則p∨q為真
C.“若am2<bm2 , 則a<b”的逆命題為真命題
D.若p∨q為假命題,則p、q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線y2=﹣16x上一點(diǎn)P到x軸的距離為12,則該點(diǎn)到焦點(diǎn)的距離為(
A.5
B.8
C.﹣5
D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,集合A={x|x<﹣2或x>2},則UA=( 。
A.(﹣2,2)
B.(﹣∞,﹣2)∪(2,+∞)
C.[﹣2,2]
D.(﹣∞,﹣2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax3﹣2x的圖象過(guò)點(diǎn)(﹣1,4)則a=

查看答案和解析>>

同步練習(xí)冊(cè)答案