函數(shù)f(x)=lnx2(  )
A、是偶函數(shù)且在(-∞,0)上單調(diào)遞增
B、是偶函數(shù)且在(0,+∞)上單調(diào)遞增
C、是奇函數(shù)且在(0,+∞)上單調(diào)遞減
D、是奇函數(shù)且在(-∞,0)上單調(diào)遞減
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)單調(diào)性的判斷與證明
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出函數(shù)的定義域,并判斷出是否關(guān)于原點(diǎn)對(duì)稱(chēng),求出f(-x)根據(jù)函數(shù)奇偶性的定義判斷,再由x的范圍對(duì)解析式化簡(jiǎn)后,由對(duì)數(shù)函數(shù)的單調(diào)性和函數(shù)奇偶性的性質(zhì),判斷出此函數(shù)的單調(diào)性,選出答案即可.
解答: 解:函數(shù)f(x)的定義域?yàn)閧x|x≠0},關(guān)于原點(diǎn)對(duì)稱(chēng),
∵f(-x)=ln (-x)2=ln x2=f(x),
∴f(x)為偶函數(shù),
∵當(dāng)x>0時(shí),f(x)=ln x2=2ln x,
∴f(x)在(0,+∞)上單調(diào)遞增,且在(-∞,0)上單調(diào)遞減,
故選B.
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性和單調(diào)性的綜合應(yīng)用,本題的關(guān)鍵熟練掌握定義和對(duì)數(shù)函數(shù)的單調(diào)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且bsinA=
3
acosB.
(Ⅰ)求角B的大;
(Ⅱ)若b=3,sinC=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
2x-y-2≥0
x-2y+2≤0
x+y-13≤0
,則z=xy的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是( 。
①棱錐的側(cè)面不一定是三角形;
②棱錐的各側(cè)棱長(zhǎng)一定相等;
③棱臺(tái)的各側(cè)棱的延長(zhǎng)線交于一點(diǎn);
④用一平面去截棱錐,得到兩個(gè)幾何體,一個(gè)是棱錐,一個(gè)是棱臺(tái).
A、①B、②C、③D、④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“λ<0”是“數(shù)列an=n2-2λn(n∈N*)為遞增數(shù)列”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某幾何體的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形,則此幾何體的體積V為( 。
A、
32
3
B、
40
3
C、
16
3
D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為奇函數(shù),且當(dāng)x<0時(shí),f(x)=x2+2x,則f(1)=( 。
A、1B、-1C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四面體ABCD中,已知AB=x,該四面體的其余五條棱的長(zhǎng)度均為2,則下列說(shuō)法中錯(cuò)誤的是( 。
A、棱長(zhǎng)x的取值范圍是:0<x<2
3
B、該四面體一定滿足:AB⊥CD
C、當(dāng)x=2
2
時(shí),該四面體的表面積最大
D、當(dāng)x=2時(shí),該四面體的體積最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+4x+5,若二次函數(shù)y=g(x)滿足:①y=f(x)與y=g(x)的圖象在點(diǎn)P(1,10)處有公共切線;②y=f(x)+g(x)是R上的單調(diào)函數(shù).則g(x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案