【題目】已知橢圓方程為,其右焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,過(guò)且垂直于拋物線(xiàn)對(duì)稱(chēng)軸的直線(xiàn)與橢圓交于、兩點(diǎn),與拋物線(xiàn)交于兩點(diǎn).

(1)求橢圓的方程;

(2)若直線(xiàn)l與(1)中橢圓相交于,兩點(diǎn), 直線(xiàn), ,的斜率分別為,, (其中),且,,成等比數(shù)列;設(shè)的面積為, 以為直徑的圓的面積分別為, , 求的取值范圍.

【答案】(1) (2)

【解析】

(1)由題意可得,,即得,結(jié)合可得橢圓方程;(2)設(shè)直線(xiàn)的方程為,將直線(xiàn)方程與橢圓方程聯(lián)立,寫(xiě)出韋達(dá)定理,由,成等比數(shù)列,可解得k值,然后分別求出S,,寫(xiě)出的表達(dá)式,利用基本不等式可得取值范圍.

(1)由拋物線(xiàn)方程得,橢圓方程為,過(guò)F垂直于拋物線(xiàn)對(duì)稱(chēng)軸的直線(xiàn)與橢圓交于M,N兩點(diǎn),可得,與拋物線(xiàn)交于C,D兩點(diǎn)可得, , ,

所以橢圓方程為 .

(2)設(shè)直線(xiàn)的方程為,

可得 ,

由韋達(dá)定理:,

,構(gòu)成等比數(shù)列, ,

由韋達(dá)定理代入化簡(jiǎn)得:,∵ ,

此時(shí),即

又由三點(diǎn)不共線(xiàn)得,從而

,

為定值.

,

當(dāng)且僅當(dāng)span>時(shí)等號(hào)成立.

綜上:的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著互聯(lián)網(wǎng)的興起,越來(lái)越多的人選擇網(wǎng)上購(gòu)物.某購(gòu)物平臺(tái)為了吸引顧客,提升銷(xiāo)售額,每年雙十一都會(huì)進(jìn)行某種商品的促銷(xiāo)活動(dòng).該商品促銷(xiāo)活動(dòng)規(guī)則如下:①“價(jià)由客定”,即所有參與該商品促銷(xiāo)活動(dòng)的人進(jìn)行網(wǎng)絡(luò)報(bào)價(jià),每個(gè)人并不知曉其他人的報(bào)價(jià),也不知道參與該商品促銷(xiāo)活動(dòng)的總?cè)藬?shù);②報(bào)價(jià)時(shí)間截止后,系統(tǒng)根據(jù)當(dāng)年雙十一該商品數(shù)量配額,按照參與該商品促銷(xiāo)活動(dòng)人員的報(bào)價(jià)從高到低分配名額;③每人限購(gòu)一件,且參與人員分配到名額時(shí)必須購(gòu)買(mǎi).某位顧客擬參加2019雙十一該商品促銷(xiāo)活動(dòng),他為了預(yù)測(cè)該商品最低成交價(jià),根據(jù)該購(gòu)物平臺(tái)的公告,統(tǒng)計(jì)了最近5年雙十一參與該商品促銷(xiāo)活動(dòng)的人數(shù)(見(jiàn)下表)

年份

2014

2015

2016

2017

2018

年份編號(hào)t

1

2

3

4

5

參與人數(shù)(百萬(wàn)人)

0.5

0.6

1

1.4

1.7

(1)由收集數(shù)據(jù)的散點(diǎn)圖發(fā)現(xiàn),可用線(xiàn)性回歸模型模擬擬合參與人數(shù)(百萬(wàn)人)與年份編號(hào)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線(xiàn)性回歸方程:,并預(yù)測(cè)2019年雙十一參與該商品促銷(xiāo)活動(dòng)的人數(shù);

(2)該購(gòu)物平臺(tái)調(diào)研部門(mén)對(duì)2000位擬參與2019年雙十一該商品促銷(xiāo)活動(dòng)人員的報(bào)價(jià)價(jià)格進(jìn)行了一個(gè)抽樣調(diào)查,得到如下的一份頻數(shù)表:

報(bào)價(jià)區(qū)間(千元)

頻數(shù)

200

600

600

300

200

100

①求這2000為參與人員報(bào)價(jià)的平均值和樣本方差(同一區(qū)間的報(bào)價(jià)可用該價(jià)格區(qū)間的中點(diǎn)值代替);

②假設(shè)所有參與該商品促銷(xiāo)活動(dòng)人員的報(bào)價(jià)可視為服從正態(tài)分布,且可分別由①中所求的樣本平均值和樣本方差估值.若預(yù)計(jì)2019年雙十一該商品最終銷(xiāo)售量為317400,請(qǐng)你合理預(yù)測(cè)(需說(shuō)明理由)該商品的最低成交價(jià).

參考公式即數(shù)據(jù)(i)回歸方程:,其中,

(ii)

(iii)若隨機(jī)變量服從正態(tài)分布,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線(xiàn)性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線(xiàn)性相關(guān)關(guān)系

B. 回歸直線(xiàn)過(guò)樣本點(diǎn)的中心(,

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,左頂點(diǎn)為,左焦點(diǎn)為,點(diǎn)在橢圓上,直線(xiàn)與橢圓交于, 兩點(diǎn),直線(xiàn), 分別與軸交于點(diǎn)

(Ⅰ)求橢圓的方程;

(Ⅱ)以為直徑的圓是否經(jīng)過(guò)定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)的坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績(jī),頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(jī)(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);

2)由直方圖可認(rèn)為考生考試成績(jī)z服從正態(tài)分布,其中分別取考生的平均成績(jī)和考生成績(jī)的方差,那么抽取的4000名考生成績(jī)超過(guò)84.81分(含84.81分)的人數(shù)估計(jì)有多少人?

3)如果用抽取的考生成績(jī)的情況來(lái)估計(jì)全市考生的成績(jī)情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績(jī)不超過(guò)84.81分的考生人數(shù)為,求.(精確到0.001

附:;

,則;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形中,,,過(guò)點(diǎn)作的垂線(xiàn),交的延長(zhǎng)線(xiàn)于點(diǎn),.連結(jié),交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置,如圖2.

(1)證明:平面平面;

(2)若的中點(diǎn),的中點(diǎn),且平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,現(xiàn)用一種新配方做試驗(yàn),生產(chǎn)了100件這種產(chǎn)品,并測(cè)量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗(yàn)結(jié)果:

質(zhì)量指標(biāo)值

頻數(shù)

6

26

38

22

8

(1)將答題卡上列出的這些數(shù)據(jù)的頻率分布表填寫(xiě)完整,并補(bǔ)齊頻率分布直方圖;

(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)與中位數(shù)(結(jié)果精確到0.1).

質(zhì)量指標(biāo)值分組

頻數(shù)

頻率

6

0.06

合計(jì)

100

1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】表示,中的最大值,.已知函數(shù),

(1)設(shè),求函數(shù)上零點(diǎn)的個(gè)數(shù);

(2)試探討是否存在實(shí)數(shù),使得對(duì)恒成立若存在,的取值范圍;若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,且下列三個(gè)關(guān)系:,,中有且只有一個(gè)正確,則函數(shù)的值域是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案