【題目】4名運動員參加一次乒乓球比賽,每名運動員都賽場并決出勝負.設(shè)第位運動員共勝場,負場,則錯誤的結(jié)論是( )
A.
B.
C. 為定值,與各場比賽的結(jié)果無關(guān)
D. 為定值,與各場比賽結(jié)果無關(guān)
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)A,B分別是雙曲線的左右頂點,設(shè)過的直線PA,PB與雙曲線分別交于點M,N,直線MN交x軸于點Q,過Q的直線交雙曲線的于S,T兩點,且,則的面積( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的極值;
(2)設(shè)函數(shù)在處的切線方程為,若函數(shù)是上的單調(diào)增函數(shù),求的值;
(3)是否存在一條直線與函數(shù)的圖象相切于兩個不同的點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,,分別是橢圓的左,右焦點,點P是橢圓E上一點,滿足軸,.
(1)求橢圓E的離心率;
(2)過點的直線l與橢圓E交于兩點A,B,若在橢圓B上存在點Q,使得四邊形OAQB為平行四邊形,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2﹣4x+3=0,過原點的直線l與圓C有公共點.
(1)求直線l斜率k的取值范圍;
(2)已知O為坐標原點,點P為圓C上的任意一點,求線段OP的中點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,棱錐P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.
(1)求證:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大小;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的離心率為且四個頂點構(gòu)成面積為的菱形.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點且斜率不為0的直線與橢圓交于,兩點,記中點為,坐標原點為,直線交橢圓于,兩點,當四邊形的面積為時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】6月12日,上海市發(fā)布了《上海市生活垃圾分類投放指南》,將人們生活中產(chǎn)生的大部分垃圾分為七大類.某幢樓前有四個垃圾桶,分別標有“可回收物”、“有害垃圾”、“濕垃圾”、“干垃圾”,小明同學要將雞骨頭(濕垃圾)、貝殼(干垃圾)、指甲油(有害垃圾)、報紙(可回收物)全部投入到這四個桶中,若每種垃圾投放到每個桶中都是等可能的,那么隨機事件“4種垃圾中至少有2種投入正確的桶中”的概率是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)).
(1)寫出直線l的普通方程與曲線C的直角坐標方程;
(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,設(shè)M(x,y)為上任意一點,求的最小值,并求相應(yīng)的點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com