一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都乘以2,再減去3,得到一組新的數(shù)據(jù),如果求得新數(shù)據(jù)的平均數(shù)為7,方差為4,則原來(lái)數(shù)據(jù)的平均數(shù)為
 
,方差為
 
考點(diǎn):眾數(shù)、中位數(shù)、平均數(shù),極差、方差與標(biāo)準(zhǔn)差
專題:概率與統(tǒng)計(jì)
分析:利用E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)即可得出.
解答: 解:由題意可得7=2E(X)-3
4=22×D(X),
解得E(X)=5,D(X)=1.
故原來(lái)數(shù)據(jù)的平均數(shù)為5,方差為1
故答案為:5,1
點(diǎn)評(píng):本題考查了隨機(jī)變量的均值與方差,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三條直線ax+2y+8=0,4x+3y-10=0,2x-y-10=0相交于一點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)采用的PM2.5的標(biāo)準(zhǔn)為:日均值在35微克/立方米以下的空氣質(zhì)量為一級(jí);在35微克/立方米一75微克/立方米之間的空氣質(zhì)量為二級(jí);75微克/立方米以上的空氣質(zhì)量為超標(biāo).某城市環(huán)保部門隨機(jī)抽取該市m天的PM2.5的日均值,發(fā)現(xiàn)其莖葉圖和頻率分布直方圖都受到不同程度的破壞,可見部分如下圖所示.

請(qǐng)據(jù)此解答如下問題:
(Ⅰ)求m的值,并分別計(jì)算:頻率分布直方圖中的[75,95)和[95,115]這兩個(gè)矩形的高;
(Ⅱ)通過頻率分布直方圖枯計(jì)這m天的PM2.5日均值的中位數(shù)(結(jié)果保留分?jǐn)?shù)形式);
(Ⅲ)從這m天的PM2.5日均值中隨機(jī)抽取2天,記X表示抽到PM2.5超標(biāo)的天數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若z=
y-3
x+1
,則實(shí)數(shù)z的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x3+ax2+bx+c有極值點(diǎn)x1,x2,且f(x1)=x1,則關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
n
P1+P2+…+Pn
為n個(gè)正數(shù)P1,P2,…,Pn的“均倒數(shù)”,已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為
1
3n+2
,則
1
a1a2
+
1
a2a3
+???+
1
anan+1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面的事件:①在標(biāo)準(zhǔn)的氣壓下,水加熱到90℃時(shí)沸騰;②在常溫下,鐵熔化;③擲一枚硬幣,出現(xiàn)正面;④實(shí)數(shù)的絕對(duì)值不小于0.其中不可能事件有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=(x-a)(x-b)-2(a<b),m、n是方程f(x)=0的兩個(gè)根(m<n),則a,b,m,n的大小關(guān)系是( 。
A、m<a<b<n
B、a<m<b<n
C、a<m<n<b
D、m<a<n<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(3,0,-1)、B(0,-2,0)、C(2,4,-2),則△ABC是( 。
A、.等邊三角形
B、等腰三角形
C、直角三角形
D、以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案